算法设计与分析题目练习三:骑士旅游问题(回溯算法)

问题描述:在一个N*N 格子的棋盘上,有一只国际象棋的骑士在棋盘的左下角,骑士只能根据象棋的规则进行移动,要么横向跳动一格纵向跳动两格,要么纵向跳动一格横向跳动两格。骑士从第一个格子出发,每个格子只能访问一次,能否访问完所有的格子, 请找到一个解决方案。

#include <iostream>
using namespace std;

/************************************************************************/
/*
	问题描述:在一个N*N 格子的棋盘上,有一只国际象棋的骑士在棋盘的左下角,骑士只能根据象棋的规则进行移动,
	要么横向跳动一格纵向跳动两格,要么纵向跳动一格横向跳动两格。骑士从第一个格子出发,每个格子只能访问
	一次,能否访问完所有的格子, 请找到一个解决方案。
*/
/************************************************************************/
#define N 8

bool backtracking(int x, int y, int cnt);

int isSafe(int x, int y, int solution[N][N])
{
	if (x >= 0 && x < N && y >= 0 && y < N && solution[x][y] == -1)
		return 1;
	return 0;
}

/* 打印数组sol */
void printSolution(int sol[N][N])
{
	printf("find one solution :\n");
	for (int x = 0; x < N; x++)
	{
		for (int y = 0; y < N; y++)
			printf(" %2d ", sol[x][y]);
		printf("\n");
	}
}

//存储解决方案
int solution[N][N];

//马跳八方,共有8中走法
int xMove[8] = { 2, 1, -1, -2, -2, -1, 1, 2 };
int yMove[8] = { 1, 2, 2, 1, -1, -2, -2, -1 };

bool KnightTour()
{
	/* 初始化 */
	for (int x = 0; x < N; x++)
		for (int y = 0; y < N; y++)
			solution[x][y] = -1;

	if (backtracking(0, 0, 1) == false)
	{
		printf("Solution does not exist");
		return false;
	}
	else
		printSolution(solution);

	return true;
}

bool backtracking(int x, int y, int cnt){
	//存储访问记录
	solution[x][y] = cnt;

	//访问完所有的格子
	if (cnt == N*N){
		return true;
	}
	int next_x, next_y;
	//一次尝试所有可以移动的格子
	for (int i = 0; i < 8; i++){
		next_x = x + xMove[i];
		next_y = y + yMove[i];

		//判断该格子是否可以访问
		if (isSafe(next_x, next_y, solution)){

			//找到解决方案 就直接返回
			if (backtracking(next_x, next_y, cnt + 1) == true) return true;
		}
	}
	solution[x][y] = -1; //回溯操作. 未找到解决方案
	return false;
}

int main()
{
	KnightTour();
	system("pause");
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

余莫星辰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值