VannaAI 使用指南
第一篇章对Vanna的原理做了一些介绍,本篇章将对其如何使用进行说明
本文介绍三种VannaAI的使用方式:
1.在官网Calab上使用
2.本地通过jupyter使用
3.本地通过pycharm使用
一、在官网Calab上使用
Vanna官网提供了快捷体验的方式入门,那就是通过Calab运行,通过一些预先准备好的数据体验其功能。
1.进入官网首页
Docs下方提供了选项Getting Started-try it in jupyter
2.查看官网文档
会调转到官方文档的页面,快速入门,这里可以看到入门方式有两种,使用实例数据快速入门和使用自己的数据快速入门,这一章我们先讲使用实例数据快速入门,点击右边的使用colab运行。
3.打开colab
点击了run using colab后会打开一个新的页面,在colab中运行app.ipynb
这里做一下说明:
1).因为是示例数据体验,所以vanna官网提前准备了相关数据及数据库相关信息。
2).我们只需要将api_key做一下修改,这里也不需要你去填写真实的apikey,只用将你在vanna官网中注册账号时的邮箱替换掉my-email@example.com就可以了(在第一章中已经展示了注册过程)。
3).在vn.ask("What are the top 10 albums by sales?")中,已经默认设置了问题,你也可以手动修改问题,目前我们只是体验功能,修改邮箱后可以直接点击运行,后面再换问题体验。
4.初始化运行
点击运行后,就会去加载一些vanna的资源,然后会出现一些提示框,点击仍然运行,然后资源加载完成会出现一个验证码输入框,这时需要你登录你的邮箱去提取验证码。
5.输入验证码
输入验证码回车,就会输出很多内容
1).首先是一些prompt的生成内容,从前面工作流程的介绍我们指导,当用户提出问题后,vanna会根据问题去向量数据库匹配相关度最高的一些DDL,Documention和sql问答对,然后将这些数据和问题形成prompt发送给LLM去处理。
2).第二部分是生成的查询sql,这个就是LLM根据前面的prompt针对vn.ask写出的sql了,问题不同,sql也会变化。我们可以根据sql判断是否与我们的问题想要查询的方式一致。
3).第三部分就是查询的结果了,这些数据是vanna的示例数据,已经提前做了一些训练和数据插入的。
这里呢,可能会有小伙伴想看下vanna的训练记录和数据,我们后面会讲到。
4