自然语言处理的8个常用工具

98 篇文章 ¥59.90 ¥99.00
本文介绍了8个自然语言处理(NLP)的常用工具,包括NLTK、SpaCy、Gensim、Stanford CoreNLP、TextBlob、AllenNLP、Transformers和Stanford NER。每个工具都提供了相关的Python或Java代码示例,涵盖了词性标注、命名实体识别、情感分析、文本相似度计算等多种任务,助力NLP研究和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自然语言处理(Natural Language Processing,简称NLP)是人工智能领域的一个重要分支,用于处理和分析人类语言。在NLP的研究和应用中,有许多强大的工具和库可供使用。本文将介绍8个常用的NLP工具,并提供相关的源代码示例。

  1. NLTK(Natural Language Toolkit)
    NLTK是Python中最常用的NLP工具之一,提供了丰富的文本处理功能和算法。它包含了大量的语料库和预训练模型,支持词性标注、句法分析、语义分析等任务。以下是一个示例代码,展示了如何使用NLTK进行词性标注:
import nltk
from nltk.tokenize import word_tokenize
from nltk.tag import pos_tag

sentence =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值