原题
Given n, how many structurally unique BST’s (binary search trees) that store values 1 … n?
Example:
Input: 3
Output: 5
Explanation:
Given n = 3, there are a total of 5 unique BST's:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
Reference Answer
思路分析
首先明确n个不等的数它们能构成的二叉搜索树的种类都是相等的。而且1到n都可以作为二叉搜索树的根节点,当k是根节点时,它的左边有k-1个不等的数,它的右边有n-k个不等的数。以k为根节点的二叉搜索树的种类就是左右可能的种类的乘积。用递推式表示就是 h ( n ) = h ( 0 ) ∗ h ( n − 1 ) + h ( 1 ) ∗ h ( n − 2 ) + . . . + h ( n − 1 ) h ( 0 ) ( 其 中 n > = 2 ) h(n) = h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)h(0) (其中n>=2) h(n)=h(0)∗h(n−1)+h(1)∗h(n−2)+...+h(n−1)h(0)(其中n>=2) ,其中h(0)=h(1)=1,因为0个或者1个数能组成的形状都只有一个。从1到n依次算出h(x)的值即可。此外这其实就是一个卡特兰数,可以直接用数学公式计算,不过上面的方法更加直观一些。
Reference Code
class Solution:
def numTrees(self, n):
"""
:type n: int
:rtype: int
"""
# if n == 0 or n == 1:
# return 1
# elif n == 2:
# return 2
# else:
# res = 0
# for i in range(n):
# res += self.numTrees(i) * self.numTrees(n-i-1)
# return res
res = [1,1]
for i in range(2,n+1):
count = 0
for j in range(i):
count += res[j] * res[i-j-1]
res.append(count)
return res[-1]
Note:
- 动态规划的使用主要难点在于递归公式的寻找,如本题 h ( n ) = h ( 0 ) ∗ h ( n − 1 ) + h ( 1 ) ∗ h ( n − 2 ) + . . . + h ( n − 1 ) h ( 0 ) ( 其 中 n > = 2 ) h(n) = h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)h(0) (其中n>=2) h(n)=h(0)∗h(n−1)+h(1)∗h(n−2)+...+h(n−1)h(0)(其中n>=2);
参考文献
[1] https://shenjie1993.gitbooks.io/leetcode-python/096 Unique Binary Search Trees.html