LeetCode 416. Partition Equal Subset Sum (分割相等子集)

原题

Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.

Note:

  1. Each of the array element will not exceed 100.
  2. The array size will not exceed 200.

Example 1:

Input: [1, 5, 11, 5]

Output: true

Explanation: The array can be partitioned as [1, 5, 5] and [11].

Example 2:

Input: [1, 2, 3, 5]

Output: false

Explanation: The array cannot be partitioned into equal sum subsets.

Reference Answer

思路分析
一个背包的题目,背包容量为数组中元素和的一半+1,这样只要看是否有元素可以正好填满背包即可.但是每个元素只能用一次,所以在尝试放一个元素的时候还要避免他对尝试放其他位置时对自己的影响.所以在尝试放一个元素到背包的时候需要从容量最大的位置开始,如果(当前位置-当前元素大小)位置可以通过放置之前的元素达到,则当前位置也可以通过放置当前元素正好达到这个位置.状态转移方程为:dp[i] = dp[i] || dp[i - nums[k]]

这道题用C++更容易实现和理解,用python怎么写怎么难受。

Code

class Solution:
    def canPartition(self, nums):
        """
        :type nums: List[int]
        :rtype: bool
        """
        # nums.sort()
        if len(nums) == 1 or not nums:
            return False
        sum_count = sum(nums)
        if sum_count % 2 != 0:
            return False
        target = sum_count // 2
        dp = [False] * (target +1)
        dp[0] = True
        
        for count in nums:
            for index in range(target, 0, -1):
                if count > index:
                    break
                dp[index] = dp[index] or dp[index - count]
        return dp[target]       
        

C++ version

class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int sums = accumulate(nums.begin(), nums.end(), 0);
        if (sums & 1) return false;
        int target = sums / 2;
        vector<bool> dp(target+1, false);
        dp[0] = true;
        for(int i=0; i < nums.size(); i++){
            for(int index = target; index >= nums[i]; index--){
                dp[index] = dp[index] || dp[index - nums[i]];
            }
        }
        return dp[target];   
      
    }
};

Note

  • accumulate(nums.begin(), nums.end(), 0) 是一种C++的求和手段,用于可迭代对象的求和,一共三个参数,第一个就是可迭代对象的开始位置,第二个为求和结束位置,第三个参数为初试加和项,这里设置为0,表示只求出nums和即可。
  • 这种题可联系背包问题进行求解。

参考文献

[1] https://blog.csdn.net/qq508618087/article/details/52774116

题目描述: 给定一个只包含正整数的非空数组,是否可以将这个数组分成两个子集,使得两个子集的元素和相等。 示例: 输入:[1, 5, 11, 5] 输出:true 解释:数组可以分割成 [1, 5, 5] 和 [11]。 解题思路: 这是一道经典的 0-1 背包问题,可以使用动态规划或者回溯算法解决。 使用回溯算法,需要定义一个 backtrack 函数,该函数有三个参数: - 数组 nums; - 当前处理到的数组下标 index; - 当前已经选择的元素和 leftSum。 回溯过程中,如果 leftSum 等于数组元素和的一半,那么就可以直接返回 true。如果 leftSum 大于数组元素和的一半,那么就可以直接返回 false。如果 index 到达数组末尾,那么就可以直接返回 false。 否则,就对于当前元素,有选择和不选择两种情况。如果选择当前元素,那么 leftSum 就加上当前元素的值,index 就加 1。如果不选择当前元素,那么 leftSum 不变,index 也加 1。最终返回所有可能性的结果中是否有 true。 Java 代码实现: class Solution { public boolean canPartition(int[] nums) { int sum = 0; for (int num : nums) { sum += num; } if (sum % 2 != 0) { return false; } Arrays.sort(nums); return backtrack(nums, nums.length - 1, sum / 2); } private boolean backtrack(int[] nums, int index, int leftSum) { if (leftSum == 0) { return true; } if (leftSum < 0 || index < 0 || leftSum < nums[index]) { return false; } return backtrack(nums, index - 1, leftSum - nums[index]) || backtrack(nums, index - 1, leftSum); } }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值