排序算法(4) -- 希尔排序

一、前言

希尔(Shell)排序又称为缩小增量排序,它是一种插入排序。它是直接插入排序算法的一种威力加强版

希尔排序,也称递减增量排序算法,以其设计者希尔(Donald Shell)的名字命名,该算法由 1959 年公布。

二、算法思想

我们举个例子来描述算法流程(以下摘自维基百科):

假设有这样一组数 {13, 14, 94, 33, 82, 25, 59, 94, 65, 23, 45, 27, 73, 25, 39, 10},如果我们以步长为 5 开始进行排序:

C++

13 14 94 33 82
25 59 94 65 23
45 27 73 25 39
10

然后我们对每列进行排序:

C++

10 14 73 25 23
13 27 94 33 39
25 59 94 65 82
45

将上述四行数字,依序接在一起时我们得到:{10, 14, 73, 25, 23, 13, 27, 94, 33, 39, 25, 59, 94, 65, 82, 45},然后再以 3 为步长:

C++

10 14 73
25 23 13
27 94 33
39 25 59
94 65 82
45

排序之后变为:

C++

10 14 13
25 23 33
27 25 59
39 65 73
45 94 82
94

最后以 1 为步长进行排序(此时就是简单的插入排序了)。

可想而知,步长的选择是希尔排序的重要部分。算法最开始以一定的步长进行排序,然后会继续以更小的步长进行排序,最终算法以步长为 1 进行排序。当步长为 1 时,算法变为直接插入排序,这就保证了数据一定会被全部排序。

下面以 n/2 作为步长为例进行讲解。

1、代码

C++:

#include <iostream>
#include <vector>

using namespace std;

vector<int> ShellSort(vector<int> list){
	vector<int> result = list;
	int n = result.size();
	for (int gap = n >> 1; gap > 0; gap >>= 1){
		for (int i = gap; i < n; i++){
			int temp = result[i];
			int j = i - gap;
			while (j >= 0 && result[j] > temp){
				result[j + gap] = result[j];
				j -= gap;
			}
			result[j + gap] = temp;
		}
		for (int i = 0; i < result.size(); i++){
			cout << result[i] << " ";
		}
		cout << endl;
	}
	return result;
}

void main(){
	int arr[] = { 6, 4, 8, 9, 2, 3, 1 };
	vector<int> test(arr, arr + sizeof(arr) / sizeof(arr[0]));
	cout << "排序前" << endl;
	for (int i = 0; i < test.size(); i++){
		cout << test[i] << " ";
	}
	cout << endl;
	vector<int> result;
	result = ShellSort(test);
	cout << "排序后" << endl;
	for (int i = 0; i < result.size(); i++){
		cout << result[i] << " ";
	}
	cout << endl;
	system("pause");
}

运行结果:

排序(3):希尔排序

可以看到,只需要比对两次就排序完成了。

Python:

# -*-coding:utf-8 -*-
def shellSort(input_list):
	length = len(input_list)
	if length <= 1:
		return input_list
	sorted_list = input_list
	gap = length // 2
	while gap > 0:
		for i in range(gap, length):
			j = i - gap
			temp = sorted_list[i]
			while j >= 0 and temp < sorted_list[j]:
				sorted_list[j+gap] = sorted_list[j]
				j -= gap
			sorted_list[j+gap] = temp
		gap //= 2
	return sorted_list 

if __name__ == '__main__':
	input_list = [50, 123, 543, 187, 49, 30, 0, 2, 11, 100]
	print('排序前:', input_list)
	sorted_list = shellSort(input_list)
	print('排序后:', sorted_list)

三、算法分析

1、希尔排序的算法性能

排序(3):希尔排序

1、时间复杂度

步长的选择是希尔排序的重要部分,只要最终步长为1任何步长序列都可以工作。

算法最开始以一定的步长进行排序。然后会继续以一定步长进行排序,最终算法以步长为1进行排序。当步长为1时,算法变为插入排序,这就保证了数据一定会被排序。

步长序列的不同,会导致最坏的时间复杂度情况的不同。

本文中,以N/2为步长的最坏时间复杂度为N^2。

Donald Shell 最初建议步长选择为N/2并且对步长取半直到步长达到1。虽然这样取可以比O(N^2)类的算法(插入排序)更好,但这样仍然有减少平均时间和最差时间的余地。可能希尔排序最重要的地方在于当用较小步长排序后,以前用的较大步长仍然是有序的。比如,如果一个数列以步长5进行了排序然后再以步长3进行排序,那么该数列不仅是以步长3有序,而且是以步长5有序。如果不是这样,那么算法在迭代过程中会打乱以前的顺序,那就不会以如此短的时间完成排序了。

用这样步长序列的希尔排序比插入排序要快,甚至在小数组中比快速排序和堆排序还快,但是在涉及大量数据时希尔排序还是比快速排序慢。

2、算法稳定性

希尔排序中相等数据可能会交换位置,所以希尔排序是不稳定的算法。

3、直接插入排序和希尔排序的比较

直接插入排序是稳定的;而希尔排序是不稳定的。

直接插入排序更适合于原始记录基本有序的集合。

希尔排序的比较次数和移动次数都要比直接插入排序少,当N越大时,效果越明显。

希尔排序的比较次数和移动次数都要比直接插入排序少,当N越大时,效果越明显。

直接插入排序也适用于链式存储结构;希尔排序不适用于链式结构

本站整理自:

http://www.cnblogs.com/jingmoxukong/p/4303270.html

https://www.61mon.com/index.php/archives/193/

https://cuijiahua.com/blog/2017/12/algorithm_3.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值