caffe学习笔记(1)

caffe学习笔记(1)
刚开始学习caffe,发现一个非常好的博客caffe学习。看了几遍收益匪浅,但是总是记不住,所以决定安装该博客的步骤一点一点实现,然后记录在该系列的博客中。原博客是在ubuntu下实现,而我是在mac下实现的,而且只是cpu模式的caffe,所以有些地方可能会有点诧异,对于ubuntu的用户,可以去参考原博客。


要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个层(layer)构成,每一屋又由许多参数组成。先看一个简单的模型jie gou:





所有的参数都定义在caffe.proto这个文件中。要熟练使用caffe,最重要的就是学会配置文件(prototxt)的编写。

层有很多种类型,比如Data,Convolution,Pooling等,层之间的数据流动是以Blobs的方式进行。

今天我们就先介绍一下数据层.

数据层是每个模型的最底层,是模型的入口,不仅提供数据的输入,也提供数据从Blobs转换成别的格式进行保存输出。通常数据的预处理(如减去均值, 放大缩小, 裁剪和镜像等),也在这一层设置参数实现。

数据来源可以来自高效的数据库(如LevelDB和LMDB),也可以直接来自于内存。如果不是很注重效率的话,数据也可来自磁盘的hdf5文件和图片格式文件。

所有的数据层的都具有的公用参数:先看示例

<span style="font-family:SimSun;font-size:18px;">layer {
  name: "cifar"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mean_file: "examples/cifar10/mean.binaryproto"
  }
  data_param {
    source: "examples/cifar10/cifar10_train_lmdb"
    batch_size: 100
    backend: LMDB
  }
}</span>

name: 表示该层的名称,可随意取

 

type: 层类型,如果是Data,表示数据来源于LevelDB或LMDB。根据数据的来源不同,数据层的类型也不同(后面会详细阐述)。一般在练习的时候,我们都是采 用的LevelDB或LMDB数据,因此层类型设置为Data。

 

top或bottom: 每一层用bottom来输入数据,用top来输出数据。如果只有top没有bottom,则此层只有输出,没有输入。反之亦然。如果有多个 top或多个bottom,表示有多个blobs数据的输入和输出。

 

data 与 label: 在数据层中,至少有一个命名为data的top。如果有第二个top,一般命名为label。 这种(data,label)配对是分类模型所必需的。

 

include: 一般训练的时候和测试的时候,模型的层是不一样的。该层(layer)是属于训练阶段的层,还是属于测试阶段的层,需要用include来指定。如果没有include参数,则表示该层既在训练模型中,又在测试模型中。

Transformations: 数据的预处理,可以将数据变换到定义的范围内。如设置scale为0.00390625,实际上就是1/255, 即将输入数据由0-255归一化到0-1之间

其它的数据预处理也在这个地方设置:

transform_param {
    scale: 0.00390625
    mean_file_size: "examples/cifar10/mean.binaryproto"
    # 用一个配置文件来进行均值操作
    mirror: 1  # 1表示开启镜像,0表示关闭,也可用ture和false来表示
    # 剪裁一个 227*227的图块,在训练阶段随机剪裁,在测试阶段从中间裁剪
    crop_size: 227
  }

后面的data_param部分,就是根据数据的来源不同,来进行不同的设置。

1、数据来自于数据库(如LevelDB和LMDB)

  层类型(layer type):Data

必须设置的参数:

  source: 包含数据库的目录名称,如examples/mnist/mnist_train_lmdb

  batch_size: 每次处理的数据个数,如64

可选的参数:

  rand_skip: 在开始的时候,路过某个数据的输入。通常对异步的SGD很有用。

  backend: 选择是采用LevelDB还是LMDB, 默认是LevelDB.

示例:

layer {
  name: "mnist"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    scale: 0.00390625
  }
  data_param {
    source: "examples/mnist/mnist_train_lmdb"
    batch_size: 64
    backend: LMDB
  }
}

2、数据来自于内存

层类型:MemoryData

必须设置的参数:

 batch_size:每一次处理的数据个数,比如2

 channels:通道数

  height:高度

   width: 宽度

示例:

layer {
  top: "data"
  top: "label"
  name: "memory_data"
  type: "MemoryData"
  memory_data_param{
    batch_size: 2
    height: 100
    width: 100
    channels: 1
  }
  transform_param {
    scale: 0.0078125
    mean_file: "mean.proto"
    mirror: false
  }
}

3、数据来自于HDF5

层类型:HDF5Data

必须设置的参数:

source: 读取的文件名称

batch_size: 每一次处理的数据个数

示例:

layer {
  name: "data"
  type: "HDF5Data"
  top: "data"
  top: "label"
  hdf5_data_param {
    source: "examples/hdf5_classification/data/train.txt"
    batch_size: 10
  }
}

4、数据来自于图片

层类型:ImageData

必须设置的参数:

  source: 一个文本文件的名字,每一行给定一个图片文件的名称和标签(label)

  batch_size: 每一次处理的数据个数,即图片数

可选参数:

  rand_skip: 在开始的时候,路过某个数据的输入。通常对异步的SGD很有用。

  shuffle: 随机打乱顺序,默认值为false

  new_height,new_width: 如果设置,则将图片进行resize

 示例:

layer {
  name: "data"
  type: "ImageData"
  top: "data"
  top: "label"
  transform_param {
    mirror: false
    crop_size: 227
    mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
  }
  image_data_param {
    source: "examples/_temp/file_list.txt"
    batch_size: 50
    new_height: 256
    new_width: 256
  }
}

5、数据来源于Windows

层类型:WindowData

必须设置的参数:

  source: 一个文本文件的名字

  batch_size: 每一次处理的数据个数,即图片数

示例:

layer {
  name: "data"
  type: "WindowData"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mirror: true
    crop_size: 227
    mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
  }
  window_data_param {
    source: "examples/finetune_pascal_detection/window_file_2007_trainval.txt"
    batch_size: 128
    fg_threshold: 0.5
    bg_threshold: 0.5
    fg_fraction: 0.25
    context_pad: 16
    crop_mode: "warp"
  }
}





  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 在 PyTorch 1.13 中启用 BUILD_CAFFE2=1 的方法如下: 1. 在编译 PyTorch 时使用环境变量 BUILD_CAFFE2 来指定是否启用 Caffe2 支持。例如,在 Linux 或 MacOS 中,可以使用以下命令行来编译 PyTorch: ``` BUILD_CAFFE2=1 python setup.py install ``` 2. 在代码中导入 PyTorch 中的 Caffe2 模块。例如,可以使用以下代码来导入 Caffe2 模块: ```python import torch.caffe2 ``` 注意:启用 BUILD_CAFFE2=1 后,PyTorch 会在编译时包含 Caffe2 的源代码,并且 PyTorch 的安装包体积会增大。 ### 回答2: 在PyTorch 1.13中启用BUILD_CAFFE2=1是为了开启与Caffe2的集成。Caffe2是Facebook开源的深度学习框架,它提供了高效的数值计算库和训练工具。PyTorch是基于Torch框架的一个Python工具包,它提供了强大的张量计算和动态神经网络的开发环境。 通过启用BUILD_CAFFE2=1,我们可以使用Caffe2的功能来加速PyTorch的训练和推理过程。Caffe2在CPU和GPU都有高效的实现,能够更好地利用硬件资源来提高计算性能。此外,Caffe2还提供了一些特殊的操作符和工具,可以用于模型的优化和部署。 在使用PyTorch时,通过启用BUILD_CAFFE2=1,我们可以轻松地切换到Caffe2的运行时,以实现更高的性能和更广泛的部署选项。例如,我们可以使用Caffe2的优化器、分布式训练和模型剪裁等功能,来提高模型的准确性和效率。另外,启用BUILD_CAFFE2=1也可以使我们更方便地将PyTorch模型部署到移动设备、边缘计算设备或云端服务器上。 总而言之,通过在PyTorch 1.13中启用BUILD_CAFFE2=1,我们可以利用Caffe2的特性和功能,进一步提高PyTorch框架的性能和部署灵活性。 ### 回答3: PyTorch 1.13启用BUILD_CAFFE2=1的意思是在构建PyTorch的时候启用了Caffe2。Caffe2是Facebook开发的机器学习框架,它在深度学习和机器学习领域有着广泛的应用。 开启BUILD_CAFFE2=1的主要目的是使PyTorch能够充分利用Caffe2的功能和特性,以提供更好的性能和功能扩展。具体来说,启用Caffe2可以带来以下几个方面的优势: 1. 加速训练和推理:Caffe2针对高效的计算图执行进行了优化,可以提供比纯Python实现更好的性能。这使得PyTorch能够更快地进行模型训练和推理,提升整体的效率和速度。 2. 跨平台支持:Caffe2支持多种硬件和操作系统平台,包括CPU、GPU和移动设备等。通过启用Caffe2,PyTorch可以更好地在不同平台上运行和部署,提供更大的灵活性和适用性。 3. 模型部署和移植性:Caffe2具有较好的模型导出和移植性。通过使用Caffe2,PyTorch可以更容易地将模型部署到生产环境中,并与其他框架集成。这为使用PyTorch进行实际应用开发提供了便利。 4. 开发者社区的支持:启用BUILD_CAFFE2=1可以获得来自Caffe2和PyTorch社区的更广泛支持。这可以让开发者更容易地获取到关于Caffe2和PyTorch的有关问题解答、教程和文档等资源,加快学习和开发的速度。 总而言之,启用BUILD_CAFFE2=1是为了让PyTorch能够更好地利用Caffe2的优势,提供更好的性能、跨平台支持和模型部署能力。这使得PyTorch成为了一款更强大和完善的深度学习框架。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值