Datawhale深度强化学习基础学习-Task3心得

        (第六章链接:第六章 深度学习基础 (johnjim0816.com))强化学习和深度学习之间存在着密切的联系。深度学习提供了一种处理和解析大规模数据的有效方法,这对于强化学习中的决策过程至关重要。它能够帮助强化学习模型从复杂环境中学习和适应,从而提高决策的质量;线性回归,即使是最基础的预测模型也可以在解决实际问题时发挥重要作用。线性回归的简洁性和解释性使它成为许多复杂模型的起点;梯度下降算法,在寻找最优解的过程中十分重要。这种方法在优化模型参数时极为有效,尤其是在处理具有多个变量的复杂问题时;逻辑回归作为一种分类算法,聚焦于处理二元输出的问题。在现实世界的许多决策场景中,这种算法是非常必要的;全连接网络能够捕捉到数据中的复杂结构,这对于理解和预测复杂环境中的行为至关重要;此外在学习CNN以及RNN中:CNN在处理图像和空间数据方面非常有效,这对于建筑学领域尤其重要。利用CNN,可以分析建筑设计的视觉和空间特征,从而帮助设计师做出更精准的设计决策;RNN特别适合处理序列数据,例如时间序列分析在建筑物的能源管理和使用模式分析中非常重要。通过RNN,可以预测建筑物的能源需求,优化能源使用,实现更高效的能源管理。

第六章的一些感受

  1. 逻辑回归与神经网络之间的联系:逻辑回归是神经网络的一个简单形式。在神经网络中,逻辑回归可以被看作是一个没有隐藏层的单层神经网络。

  2. 全连接网络、卷积神经网络、循环神经网络的应用场景

    • 全连接网络:适用于结构化数据,如表格数据。
    • 卷积神经网络(CNN):适用于图像处理,特别是在图像分类和识别方面表现出色。
    • 循环神经网络(RNN):适用于序列数据,如文本或时间序列数据。
  3. RNN反向传播:RNN在反向传播时通常会比全连接网络慢,因为它涉及到时间步长的梯度传播。在处理长序列时,这会导致所谓的梯度消失或梯度爆炸问题,增加了计算复杂性。

        第七章(链接:第七章 DQN算法 (johnjim0816.com))不仅详细介绍了DQN算法的核心组成部分,还通过实战示例展示了如何将理论应用于实际问题。

深度Q网络(DQN)算法的综合理解

        DQN算法是一种结合了深度学习和强化学习的先进技术。它利用深度神经网络来估计Q值,这一点在传统的强化学习方法中是难以实现的。DQN算法通过这种方式显著提高了处理高维感知输入的能力,从而在更复杂的环境中实现有效的决策。

核心要素的融合

  • 深度网络:深度网络是DQN的核心,它使得算法能够处理复杂的、高维的输入数据。这一点对于理解和解析如视频游戏这类复杂环境中的数据至关重要。

  • 经验回放:经验回放的引入提高了数据利用效率,并且减少了学习过程中的相关性和方差。这个机制通过存储代理的经验并随机采样来进行训练,从而使学习过程更加稳定。

  • 目标网络:目标网络是DQN中的另一个关键创新。它通过创建一个稳定的目标来更新估计网络,从而减少了学习过程中的波动性。

实战部分的学习体会

        从伪代码的理解到模型的定义,再到智能体和环境的建立,每一个步骤都是对理论知识的巩固和实践。特别是参数的设置,它直接影响到算法的性能和效率,这要求在实际应用中精细调整以适应不同的问题和环境。

第七章的一些感受

  1. DQN改进:与Q-learning相比,DQN(Deep Q-Network)算法引入了深度学习,使用神经网络来近似Q值函数。这使得它可以处理更复杂的、高维的状态空间。

  2. 引入ε-greedy策略:在DQN中使用ε-greedy策略是为了平衡探索和利用。这样的策略使得算法有一定概率选择随机动作,帮助发现新的、可能更优的策略。

  3. 目标网络的作用:DQN中使用目标网络来稳定学习过程。由于DQN使用相同的网络来选择和评估动作,这可能导致学习过程不稳定。目标网络通过为更新步骤提供一个固定的目标来缓解这个问题。

  4. 经验回放作用:经验回放存储过去的转换(状态、动作、奖励等),并随机采样以进行训练。这有助于打破样本间的相关性,提高数据利用率,从而提高学习的稳定性和效率。

        第八章(链接:第八章 DQN算法进阶 (johnjim0816.com))不仅介绍了几种重要的DQN改进算法,还通过实战示例展示了如何在实际情况中应用这些高级技术。通过学习,对DQN算法的多种变体和它们各自的独特优势有了更加深入的理解。

DQN进阶算法的综合理解

        核心在于介绍了DQN算法的几种重要扩展,每种都针对原始DQN的某些限制进行改进。

  • Double DQN算法 解决了原始DQN中的过高估计问题。通过分离选择动作和评估动作的两个网络,它降低了过估计带来的不稳定性。

  • Dueling DQN算法 引入了一种新的网络结构,这种结构可以独立估计状态值和优势值。这种方法提高了学习效率,特别是在那些动作选择对状态改变没有明显影响的情况下。

  • Noisy DQN算法 通过在网络中引入噪声,增加了探索性,这有助于算法在更多样化的状态空间中学习。

  • PER DQN算法(Prioritized Experience Replay DQN)改进了经验回放机制,通过优先级来决定回放的经验,从而提高了学习的效率和有效性。

  • C51算法Rainbow DQN算法 是DQN的更进一步的改进,它们通过结合多种技术,提高了性能和鲁棒性。

实战部分的学习体会

        章节中的实战部分对于理解这些高级技术是如何在实际问题中应用的至关重要。通过具体的实现步骤,如伪代码的编写和SumTree结构的构建,能够更加深入地理解每种算法的运作原理和实际应用方法。特别是在需要处理大规模、动态变化的环境时,这些算法提供了一系列有效的解决方案。

第八章的一些感受

  1. Q值过估计问题:DQN算法产生Q值过估计的原因是在更新过程中使用最大化操作。由于网络的随机初始化和噪声,某些估计值可能被过高估计,这些过高的估计会在后续学习中被传播,导致整体的Q值被系统性地过估计。

  2. Noisy DQN和ε-greedy策略:Noisy DQN通过向网络中添加噪声来增加探索,这种噪声是网络参数的一部分,随训练而调整。而ε-greedy策略则是在行动选择时以一定的概率随机选择动作。Noisy DQN为探索提供了一种更动态的方法,因为噪声随着网络的学习而调整,而ε-greedy则是一种更静态的探索方法。

  • 21
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值