高等工程数学 —— 第四章 (2)线性方程组的迭代解法和极小化方法

高等工程数学 —— 第四章 (2)线性方程组的迭代解法和极小化方法

线性方程组的迭代解法

迭代的一般解法

在这里插入图片描述在这里插入图片描述

  • 因此判断迭代是否收敛可以判断谱半径(最大特征值)是否小于1

在这里插入图片描述

  • 可见谱半径越小,收敛速度越快,迭代次数越少。

例题:
在这里插入图片描述
在这里插入图片描述

  • B B B的两个特征值相同时可使得取最小值。因为有绝对值,所以等式两边同时平方就好了。

在这里插入图片描述
在这里插入图片描述

Jacobi迭代法

在这里插入图片描述
看道例题就好了!

例:
在这里插入图片描述
在这里插入图片描述

  • 其实就是通过简单的移项来构造出每一个第 k k k次的 x x x能被 k − 1 k-1 k1次的 x x x所表示。然后不断的迭代代值直到 x x x的值不再改变。

Gauss-Seidel迭代法

在这里插入图片描述还是看道例题就好了!

例:

在这里插入图片描述在这里插入图片描述

  • k k k次的 x x x值肯定比第 k − 1 k-1 k1次的 x x x值要接近正确答案。因此我们可以用已经算出的第 k k k次的 x x x值来代替第 k − 1 k-1 k1次的 x x x值。例如,在算 x 2 ( k ) x_2^{(k)} x2(k)时我们已经算出来的 x 1 ( k ) x_1^{(k)} x1(k)可以代替该式子中的 x 1 ( k − 1 ) x_1^{(k-1)} x1(k1).这样可以使得迭代次数更少一点。

J迭代法与G-S迭代法的收敛性

看例题就好了!

例1:
在这里插入图片描述

在这里插入图片描述

  • 对于J法而言,其实就是对角线元素乘以 λ \lambda λ后的行列式为0.解出来的 λ \lambda λ值如果小于0那么说明J法收敛。

在这里插入图片描述

  • 对于G-S法而言,就是下三角部分乘以 λ \lambda λ后的行列式值为0.解出来的 λ \lambda λ值小于0即收敛,大于0则发散。
  • 上述例题可见,J法是否收敛与G-S法是否收敛并没有关系。

例2:
在这里插入图片描述

超松弛迭代法(SOR)

在这里插入图片描述
看不懂,别看了。看例题吧!

例:

在这里插入图片描述在这里插入图片描述在这里插入图片描述

  • 其实就是在G-S迭代法的基础上又加了一项来减少迭代次数。

SOR法的收敛性

在这里插入图片描述

  • 严格对角占优矩阵:每一行的对角线元素都大于其余元素之和
  • 弱对角占优矩阵:至少有一行满足严格对角占优,其余行对角线元素的值可以等于其他元素和。

不可约矩阵定义如下:
在这里插入图片描述

极小化方法

不想解释太多了,咱直接看例题吧。

最速下降法

引用另一个博主一张图,咱写不出来这么娟秀的字体~
在这里插入图片描述

  • 我的理解就是通过对 f ( x k + α f(x^k+\alpha f(xk+α d k ) d^k) dk)求导解出取极值时的最优步长 α \alpha α的值

例:
在这里插入图片描述
在这里插入图片描述

共轭梯度法

哎,学例题吧。推导证明咱也看不懂。

例:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
FR共轭梯度法例题

例1:
在这里插入图片描述在这里插入图片描述
例2:
在这里插入图片描述

  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值