【CV-CUDA实战】使用Python+TensorRT+CVCUDA优化YOLOv8 NVIDIA CV-CUDA™ 是一个开源项目,用于构建云规模人工智能 (AI) 成像和计算机视觉 (CV) 应用程序。它使用图形处理单元 (GPU) 加速来帮助开发人员构建高效的预处理和后处理管道。它可以将吞吐量提高 10 倍以上,同时降低云计算成本。
【初见Diffuser】利用PytorchLightning和HuggingFace训练你的第一个扩散模型 随着近两年AI绘画的爆红,Diffuser扩散模型一夜爆火。StableDiffusion为无数的内容创作者提供了创作动力。那么,我们如何从0训练一个属于自己的扩散模型呢?
【Elin的开坑记录】Yolov8淌水以及反人类“设计” 这一次Yolov8的确做到了性能提升,另外通过内置的API可以直接进行模型的推理,这无疑是极大程度的便利了AI科学家以及AI开发者。但是数据结构的强制更新以及模型输出结果的变化,会让像我这样从v5过度到v8的用户会非常不适。慢慢适应吧。
【高可用AI推理服务】使用WSL2部署Triton Inference Server推理服务器 Triton Inference Server(Triton推理服务器)是NVIDIA推出的高性能推理服务器,皆在实现简化ML Ops的工作流程。PytorchONNXTensorRTTriton Infercen Server极大程度的便利了AI开发者的工作流,通过将模型统一放置在模型仓库内进行统一管理,以及gRPC/HTTP2通信协议,使得Triton在保证了高性能的同时,也有着极强的高可用性和扩展性。针对如何使用Triton部署自己训练的模型,以及如何编写。
【高可用对象存储实战】使用Python操作Minio存储桶 Minio是一个基于Golang实现的高可用、高弹性的开源对象存储系统(OSS),皆在提供云上的高可扩展与高性能的分布式文件存储系统。Minio十分的易部署,主需要极短的命令行即可实现运行与运维双重工作流。在Minio中的概念中一共有两个重要概念,即桶和对象。对象可以很好理解,无非就是传统意义上的文件对象,一个单独的file object。可什么又是桶呢?你可以将文件对象抽象为水,那么水由桶撑着就很好理解。而Minio中的桶也是借鉴了这个概念,实际上这个桶也的确是一个标准的Linux文件夹。