Pandas学习笔记

value_counts方法是pandas库中用于统计数据表中不同值出现的频次,它可以对列进行计数和排序。通过.round()可以四舍五入指定精度,.clip()则用于设定数值范围。示例展示了如何统计训练数据集中前4列的前5个最常见的类别,并将结果保存为字典形式。
摘要由CSDN通过智能技术生成

.value_counts():

value_counts常用于数据表的计数及排序,它可以用来查看数据表中,指定列里有多少个不同的数据值,并计算每个不同值有在该列中的个数,同时还能根据需要进行排序。

# 统计前4列的数值类别 保存为字典的形式 可以观察字典的键值是否是整形来判断数据是否为类别型
pd.Series({ft: [train[ft].value_counts().round(3).iloc[:5].to_dict()] for ft in train.columns}, name='top_5_counts_train')

.round(n):

四舍五入保留小数点后n位数字。

.clip(a, b):

在输入阈值处修剪值,小于a或大于b的都将被修改为a或b。

pd.DataFrame(index=X.columns):

使用 df = pd.DataFrame(index=X.columns) 创建一个空的df,其中df的索引为X的列名,接下来只需要按照需求为df添加列名跟对应数据即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值