nyoj 118 修路方案

修路方案

时间限制: 3000 ms  |  内存限制: 65535 KB
难度: 5
描述

南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修路。

现在已经知道哪些城市之间可以修路,如果修路,花费是多少。

现在,军师小工已经找到了一种修路的方案,能够使各个城市都联通起来,而且花费最少。

但是,南将军说,这个修路方案所拼成的图案很不吉利,想让小工计算一下是否存在另外一种方案花费和刚才的方案一样,现在你来帮小工写一个程序算一下吧。

输入
第一行输入一个整数T(1<T<20),表示测试数据的组数
每组测试数据的第一行是两个整数V,E,(3<V<500,10<E<200000)分别表示城市的个数和城市之间路的条数。数据保证所有的城市都有路相连。
随后的E行,每行有三个数字A B L,表示A号城市与B号城市之间修路花费为L。
输出
对于每组测试数据输出Yes或No(如果存在两种以上的最小花费方案则输出Yes,如果最小花费的方案只有一种,则输出No)
样例输入
2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
样例输出
No
Yes
来源
POJ题目改编
上传者

张云聪

这个是用prim算法写的,上一篇是用kruskal算法写的,策略不同:这个是加入一条边,把形成的环中除新加入的边之外最大的那条边删除,而kruskal算法是直接找有没有下一条边与之相同且分属不同的连通分量

//用Prim算法求出次小生成树,如果总的权值跟最小生成树权值相同,则存在另一种方案否则不存在 
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define maxn 0x3f3f3f3f
int map[510][510];//用邻接矩阵存图
int used[510][510];//表示边是否被用过
int pre[510];//记录与i点相连的点
int lowcost[510];//表示顶点到最小生成树的最小权值
int visit[510];//标记节点是否加入了最小生成树
int Max[510][510];//记录i到j之间加入到生成树中的最大的权值
int V; 
int prim(){//求最小生成树的权值和
	int sum=0; 
	memset(used,0,sizeof(used));
	memset(visit,0,sizeof(visit));
	memset(Max,0,sizeof(Max));
	for(int i=1;i<=V;i++){
		lowcost[i]=map[1][i]; 
		pre[i]=1;
	} 
	pre[1]=0;
	visit[1]=1;
	lowcost[1]=0;
	for(int i=2;i<=V;i++){//依次找到最小的值加入树中 
		int min=maxn;
		int minn=0;
		for(int j=1;j<=V;j++){
			if(!visit[j]&&lowcost[j]<min){
				min=lowcost[j];
				minn=j;
			}
		}
		//if(min==maxn)
		//return -1;
		sum+=min;
		visit[minn]=1;
		used[minn][pre[minn]]=1;
		used[pre[minn]][minn]=1;//标记新加入的这条边,表示已经被加入 
		for(int j=1;j<=V;j++){
			if(visit[j]){
				Max[j][minn]=max(Max[pre[minn]][j],lowcost[minn]);
				Max[minn][j]=max(Max[pre[minn]][j],lowcost[minn]);
			}
			if(!visit[j]&&lowcost[j]>map[minn][j]){
				lowcost[j]=map[minn][j];
				pre[j]=minn;
			}
		}
	}
	return sum; 
} 
int smst(int V,int sum){//sum是最小生成树的权值,此作用是求次小生成树 
	int ans=maxn;
    for (int i=1;i<=V;i++)//枚举最小生成树之外的边
        for (int j=i+1;j<=V;j++)
            if(map[i][j]!=maxn&&!used[i][j])//如果有边并且此条边没有在最小生成树内 
                ans=min(ans,sum+map[i][j]-Max[i][j]);//加入一条边之后一定构成环,需要去掉该环中除了新加入的边中最长的一条 
    if(ans==maxn) 
	return -1;
    return ans;
}
int main(){
	int T,E,A,B,L;
	scanf("%d",&T);
	while(T--){
		memset(map,0,sizeof(map));
		scanf("%d %d",&V,&E);
		for(int i=1;i<=V;i++){
			for(int j=1;j<=V;j++){
				if(i==j)
				map[i][j]=0;
				else
				map[i][j]=maxn;
			}
		}
		for(int i=0;i<E;i++){
			scanf("%d %d %d",&A,&B,&L);
			map[A][B]=L;
			map[B][A]=L;
		}
		int ans=prim(); 
		if(ans==smst(V,ans)){
			printf("Yes\n");
		}
		else
		printf("No\n");
	}
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值