修路方案
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
5
-
描述
-
南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修路。
现在已经知道哪些城市之间可以修路,如果修路,花费是多少。
现在,军师小工已经找到了一种修路的方案,能够使各个城市都联通起来,而且花费最少。
但是,南将军说,这个修路方案所拼成的图案很不吉利,想让小工计算一下是否存在另外一种方案花费和刚才的方案一样,现在你来帮小工写一个程序算一下吧。
-
输入
-
第一行输入一个整数T(1<T<20),表示测试数据的组数
每组测试数据的第一行是两个整数V,E,(3<V<500,10<E<200000)分别表示城市的个数和城市之间路的条数。数据保证所有的城市都有路相连。
随后的E行,每行有三个数字A B L,表示A号城市与B号城市之间修路花费为L。
输出
- 对于每组测试数据输出Yes或No(如果存在两种以上的最小花费方案则输出Yes,如果最小花费的方案只有一种,则输出No) 样例输入
-
2 3 3 1 2 1 2 3 2 3 1 3 4 4 1 2 2 2 3 2 3 4 2 4 1 2
样例输出
-
No Yes
来源
- POJ题目改编 上传者
这个是用prim算法写的,上一篇是用kruskal算法写的,策略不同:这个是加入一条边,把形成的环中除新加入的边之外最大的那条边删除,而kruskal算法是直接找有没有下一条边与之相同且分属不同的连通分量
//用Prim算法求出次小生成树,如果总的权值跟最小生成树权值相同,则存在另一种方案否则不存在
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define maxn 0x3f3f3f3f
int map[510][510];//用邻接矩阵存图
int used[510][510];//表示边是否被用过
int pre[510];//记录与i点相连的点
int lowcost[510];//表示顶点到最小生成树的最小权值
int visit[510];//标记节点是否加入了最小生成树
int Max[510][510];//记录i到j之间加入到生成树中的最大的权值
int V;
int prim(){//求最小生成树的权值和
int sum=0;
memset(used,0,sizeof(used));
memset(visit,0,sizeof(visit));
memset(Max,0,sizeof(Max));
for(int i=1;i<=V;i++){
lowcost[i]=map[1][i];
pre[i]=1;
}
pre[1]=0;
visit[1]=1;
lowcost[1]=0;
for(int i=2;i<=V;i++){//依次找到最小的值加入树中
int min=maxn;
int minn=0;
for(int j=1;j<=V;j++){
if(!visit[j]&&lowcost[j]<min){
min=lowcost[j];
minn=j;
}
}
//if(min==maxn)
//return -1;
sum+=min;
visit[minn]=1;
used[minn][pre[minn]]=1;
used[pre[minn]][minn]=1;//标记新加入的这条边,表示已经被加入
for(int j=1;j<=V;j++){
if(visit[j]){
Max[j][minn]=max(Max[pre[minn]][j],lowcost[minn]);
Max[minn][j]=max(Max[pre[minn]][j],lowcost[minn]);
}
if(!visit[j]&&lowcost[j]>map[minn][j]){
lowcost[j]=map[minn][j];
pre[j]=minn;
}
}
}
return sum;
}
int smst(int V,int sum){//sum是最小生成树的权值,此作用是求次小生成树
int ans=maxn;
for (int i=1;i<=V;i++)//枚举最小生成树之外的边
for (int j=i+1;j<=V;j++)
if(map[i][j]!=maxn&&!used[i][j])//如果有边并且此条边没有在最小生成树内
ans=min(ans,sum+map[i][j]-Max[i][j]);//加入一条边之后一定构成环,需要去掉该环中除了新加入的边中最长的一条
if(ans==maxn)
return -1;
return ans;
}
int main(){
int T,E,A,B,L;
scanf("%d",&T);
while(T--){
memset(map,0,sizeof(map));
scanf("%d %d",&V,&E);
for(int i=1;i<=V;i++){
for(int j=1;j<=V;j++){
if(i==j)
map[i][j]=0;
else
map[i][j]=maxn;
}
}
for(int i=0;i<E;i++){
scanf("%d %d %d",&A,&B,&L);
map[A][B]=L;
map[B][A]=L;
}
int ans=prim();
if(ans==smst(V,ans)){
printf("Yes\n");
}
else
printf("No\n");
}
return 0;
}