光伏逆变器MPPT基本算法介绍-李星硕

前言
在上一个话题中,我们阐述了光伏MPPT基本原理:从本质上来说,MPPT算法均是通过DC-DC的占空比d来进行控制的。至于如何计算占空比d的值,则取决于具体的MPPT算法。那么在本话题中,我们将介绍两种基本的MPPT算法,即观察扰动法(Perturb and Observe,P&O)和电导增量法(Incremental Conductance,INC)。
P&O法与INC法的基本原理
到目前为止,已经有超过20种MPPT算法被提出并被验证 [1,2]。在这些MPPT算中,由于P&O法和INC法较为简单且较为实用,因此是最为常见的MPPT算法。其基本原理,如下图所示。
在这里插入图片描述
如上图所示,P&O法是利用光伏组件功率-电压(P-V)曲线的特性,来对当前工作点的位置进行判断,进而决定下一次的扰动方向是向左还是向右。一般来说,可以用以下公式进行判断:
在这里插入图片描述
INC法则是根据在最大功率点(MPP)时,光伏组件的输出功率对电压的微分为0而被提出来的。我们可以将INC法看做是对P&O法进行进一步推导而得出的[4]。在MPP处,有
在这里插入图片描述
将P=VI带入上式中,则有
在这里插入图片描述
根据上式,INC法可以通过以下公式进行判断:
在这里插入图片描述
其中,I/V为电导,而ΔI/ΔV则为电导增量,故此方法被称为电导增量法

P&O法流程图与实例说明
P&O法流程图如下图所示。首先,算法需要采集当前光伏组件电压V(k)、电流I(k),并读取上一次采集到到的电压V(k-1)、电流I(k-1)。然后,计算电压增量ΔV和功率增量ΔP,继而根据上文所得到P&O法的公式进行逻辑判断。完成判断后,则会通过调节占空比d,最终决定工作点下一次移动的方向。

在这里插入图片描述
为了更好地理解这一流程,我们一下图作为实例进行讲解 [5]。
1、假定工作点从D处移动到A处,我们发现ΔP、ΔV均为正,因此下一次移动方向应向右。
2、假定工作点从A处移动到D处,我们发现ΔP、ΔV均为负,因此下一次移动方向应向右。
3、同理,假定工作点从C处移动到B处,我们发现ΔP为正且ΔV为负,因此下一次移动方向应向左。
4、假定工作点从B处移动到C处,我们发现ΔP为负且ΔV为正,因此下一次移动方向应向左。

在这里插入图片描述
当工作点移动至MPP附近时,P&O法将会围绕MPP进行三电平扰动(Three-level Perturbation),具体分析如下:
1、假定工作点由A处移动至MPP处后,我们发现ΔP、ΔV均为正,因此下一次移动方向应向右,假定移动至B处。
2、当工作点由MPP处移动至B后,我们发现ΔP为负且ΔV为正,因此下一次移动方向应向左,故而工作点将回到MPP处。
3、假定工作点由B处移动至MPP处后,我们发现ΔP为负且ΔV为正,因此下一次移动方向应向左,故而工作点将回到A处。
4、当工作点由MPP处移动至A后,我们发现ΔP、ΔV均为负,因此下一次移动方向应向右,故而工作点将回到MPP处。
重复以上过程,工作点将会持续不断地围绕MPP进行三电平扰动。仿真结果如下图示 [5]:
在这里插入图片描述
从上图可以清楚地看出,光伏组件输出电压与占空比d会在MPP处进行三电平扰动,从而维持P&O法大致工作在MPP处。
至于INC法,与P&O法大同小异 [4],故本文不做进一步介绍。如果对INC法感兴趣,请阅读本人文献 [3,6]。

参考文献
[1] B. Subudhi and R. Pradhan, “A comparative study on maximum power point tracking techniques for photovoltaic power systems,” IEEE Trans. Sutain. Energy, vol. 4, no. 1, pp. 89–98, Jan. 2013.
[2] M. de Brito, L. Galotto, L. Sampaio, G. de Azevedo e Melo, and C. Canesin, “Evaluation of the main mppt techniques for photovoltaic applications,” IEEE Trans. Ind. Electron, vol. 60, no. 3, pp. 1156–1167, Mar. 2013.
[3] X. Li, H. Wen and Y. Hu, “Evaluation of different maximum power point tracking (MPPT) techniques based on practical meteorological data,” 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), Birmingham, 2016, pp. 696-701.
[4] D. Sera, L. Mathe, T. Kerekes, S. V. Spataru, and R. Teodorescu, “On the perturb-and-observe and incremental conductance mppt methods for pv systems,” IEEE lournal of Photovoltaics, vol. 3, no. 3, pp. 1070-1078, Jul. 2013.
[5] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Transaction Power Electronics, vol. 20, no. 4, pp. 963-973, Jul. 2005.
[6] 李星硕, 文辉清, 罗恒阳. 基于电导增量MPPT算法在光伏系统的比较研究[J]. 电力电子技术, 2016(12):91-94.
作者介绍
李星硕,现为西交利物浦大学电气与电子工程博士生。主要研究电力电子在光伏系统下的应用,如最大功率点追踪、分布式光伏发电以及光伏组件老化检测技术等。现已发表5篇SCI,并担任国际SCI源刊IEEE Trans. Ind. Electron.、IEEE Trans. Ind. Appl.等期刊的审稿人。
限于篇幅,已做删减,另文章首尾冠名广告正式招商,功率器件,SiC,GaN,数字电源,新能源厂家都可合作,有意者加微信号1768359031详谈。
公众号 电力电子技术与新能源 欢迎订阅
出自 Micro_Grid 电力电子技术与新能源 2022-05-03 19:29

<think>好的,我现在需要回答用户关于电导增量法(Incremental Conductance MPPT)在太阳能系统中工作原理或实现方式的问题。首先,我得回忆一下MPPT的基础知识。MPPT是最大功率点跟踪,太阳能电池的输出功率受光照、温度等影响,MPPT算法的作用就是找到并维持在最大功率点,从而提高效率。 电导增量法是其中一种常用算法。用户可能已经知道扰动观察法(Perturb and Observe),而电导增量法可能是它的改进版本。我需要比较两者的不同,并解释电导增量法如何工作。 电导增量法的核心应该是利用电导的变化来判断工作点的位置。记得最大功率点处的条件是dP/dV=0,而P=VI,所以微分后得到dP/dV = I + V*dI/dV =0。因此,在最大功率点时,dI/dV = -I/V。这可能就是电导增量法的判断依据。 接下来,我需要将这个数学条件转化为算法的步骤。算法应该测量当前的电压和电流变化,计算增量ΔI和ΔV,然后比较ΔI/ΔV与-I/V的关系。根据比较结果,调整电压的方向,使得工作点向最大功率点移动。 需要解释具体判断条件:当ΔI/ΔV = -I/V时,处于最大功率点,保持当前电压;当ΔI/ΔV > -I/V时,说明在左侧,需要增大电压;反之则减小电压。这可能涉及到如何处理ΔV为零的情况,避免除以零错误,这时候可能需要特殊处理或者采用之前的趋势调整。 在实现方面,需要考虑如何采样电压和电流,计算增量,然后调整占空比来控制DC-DC转换器,比如Boost或Buck电路。可能还需要考虑步长的选择,较大的步长响应快但可能振荡,较小步长更精确但跟踪速度慢。是否有自适应步长的优化方法? 另外,电导增量法相比扰动观察法的优势在于,在光照快速变化时表现更好,因为它是基于导数的理论值,而扰动法可能因为扰动方向错误导致效率下降。但实现起来可能计算量稍大,因为需要处理更多的运算,比如微分项的估算。 用户可能还会关心实际应用中的问题,比如噪声对电流电压测量的影响,如何处理采样间隔和算法执行频率,以及硬件实现的挑战,比如微控制器的计算能力是否足够。 最后,我需要确保回答结构清晰,分点说明原理和实现步骤,可能还需要代码示例或流程图。同时生成相关问题,帮助用户深入理解,比如比较其他MPPT算法,参数调整方法,或者实际应用中的挑战。</think>### 电导增量法(Incremental Conductance MPPT)原理 电导增量法是一种通过实时比较光伏系统电导变化率与瞬时电导的比值来实现最大功率点跟踪(MPPT)的算法。其核心基于光伏电池的功率-电压($P-V$)特性曲线,最大功率点(MPP)处的导数为零,即: $$ \frac{dP}{dV} = 0 $$ 由于功率$P = V \cdot I$,对其求导可得: $$ \frac{dP}{dV} = I + V \cdot \frac{dI}{dV} = 0 \implies \frac{dI}{dV} = -\frac{I}{V} $$ 这表明在MPP处,电流变化率与电压变化率的比值等于负的瞬时电导($-I/V$)。 ### 实现步骤 1. **采样与计算**: 每隔固定时间测量光伏系统的输出电压$V(k)$和输出电流$I(k)$,计算增量: $$ \Delta V = V(k) - V(k-1), \quad \Delta I = I(k) - I(k-1) $$ 2. **判断条件**: - 若$\Delta I / \Delta V = -I/V$ → 处于MPP,保持当前电压[^1]。 - 若$\Delta I / \Delta V > -I/V$ → MPP在右侧,需增大电压(如增大占空比)。 - 若$\Delta I / \Delta V < -I/V$ → MPP在左侧,需减小电压。 3. **电压调整**: 通过DC-DC转换器(如Boost电路)调整占空比,改变光伏系统的工作电压,直至满足MPP条件。 ### 算法优势与挑战 - **优势**:在光照快速变化时跟踪精度高,避免了扰动观察法的振荡问题[^2]。 - **挑战**:需高精度传感器测量$\Delta I$和$\Delta V$;需处理$\Delta V=0$的极端情况(可通过固定方向微调解决)。 ### 示例代码(伪代码) ```python def incremental_conductance(v_prev, i_prev, v_now, i_now, duty_cycle): delta_v = v_now - v_prev delta_i = i_now - i_prev if delta_v == 0: if delta_i == 0: return duty_cycle # 稳态,无需调整 else: # 根据delta_i符号调整电压方向 duty_cycle += 0.01 if delta_i > 0 else -0.01 else: conductance_ratio = delta_i / delta_v target = -i_now / v_now if abs(conductance_ratio - target) < 0.001: return duty_cycle # 到达MPP elif conductance_ratio > target: duty_cycle += 0.01 # 增大电压 else: duty_cycle -= 0.01 # 减小电压 return duty_cycle ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值