概率论第一部分

一、概率论的基本概念

随机试验E的所有可能结果组成的集合称为E的样本空间S,样本空间中的元素称为样本点。

S的一个子集称为E的随机事件。

单个样本点称为基本事件。

必然事件、不可能事件

和事件、积事件、差事件、逆事件(对立事件)

频率:某n次实验中,事件A发生的次数与n的比值

概率:E是随机试验,S是样本空间,对于E的每一个事件,赋予一个实数,记为P(A), 如果集合函数 P ( . ) P(.) P(.)满足下列条件:

1、非负性 P ( A ) ≥ 0 P(A) \geq 0 P(A)0

2、规范性 对于必然事件, P ( S ) = 1 P(S)=1 P(S)=1

3、可列可加性: P ( A 1 ∪ A 2 ∪ …   ) = P ( A 1 ) + P ( A 2 ) + … P(A_1 \cup A_2 \cup \dots )=P(A_1)+P(A_2)+\dots P(A1A2)=P(A1)+P(A2)+ ,当 A i , A j A_i,A_j Ai,Aj为互斥事件时。

则称 P ( A ) P(A) P(A)为事件A的概率。

等可能概型(古典概型)

放回抽样、不放回抽样

超几何分布

N N N件产品,其中有 D D D件次品,从中任取 n n n件,问其中恰好有 k ( k ≤ D ) k(k\leq D) k(kD)件次品的概率是多少?

p = ( D k ) ( N − D n − k ) ( N n ) p=\frac{\binom{D}{k}\binom{N-D}{n-k}}{\binom{N}{n}} p=(nN)(kD)(nkND)

p p p的式子称为超几何分布的概率公式

例:15名学生随机的平均分配到三个班,其中有三名优生,(1)每个班各分到一名优生的概率是多少?(2)3名优生分配到同一个班的概率是多少?

错误思路:

第一问:

假设编号为1班、2班、3班,假设1班先选。因为是随机选人,所以谁先谁后都不要紧,最后的概率都相等。

1班选中1名优生和4名非优生的概率为:

p = ( 3 1 ) ( 12 4 ) ( 15 5 ) p=\frac{\binom{3}{1}\binom{12}{4}}{\binom{15}{5}} p=(515)(13)(412)

算出来是 45 / 91 45/91 45/91.

而正确答案为 25 / 91 25/91 25/91.

错误在于,这里求得的答案和题目要求的答案不是一回事。我们只保证了1班选中1名优生,此时2班和3班有没有选中合适的人,我们根本没有考虑。而题目要求的是3个班都选中一名优生。我们求得的结果一定是大于最终正确的答案的。

第二种错误思路:

P = 3 15 × 2 14 × 1 13 = 1 5 × 1 7 × 1 13 P=\frac{3} {15} \times \frac{2}{14} \times \frac{1}{13}=\frac{1}{5} \times \frac{1}{7} \times \frac{1}{13} P=153×142×131=51×71×131

错误在于,这里算的是每个班选一次就都选中一名优生的概率。而实际上每个班可以选5次,只要5次当中刚好有一次选中了优生即可。

正确的做法为:

p = ( 3 1 ) ( 2 1 ) ( 12 4 ) ( 8 4 ) ( 15 5 ) ( 10 5 ) = 25 91 p=\frac{\binom{3}{1}\binom{2}{1} \binom{12}{4}\binom{8}{4}}{\binom{15}{5}\binom{10}{5}}=\frac{25}{91} p=(515)(510)(13)(12)(412)(48)=9125

第二问: 求出1班分到3个优生的概率,另两个班不用管,一定符合要求。最后要乘以3,因为3个班都有机会。

p = ( 3 1 ) ( 12 2 ) ( 15 5 ) = 6 91 p=\frac{\binom{3}{1}\binom{12}{2}}{\binom{15}{5}}=\frac{6}{91} p=(515)(13)(212)=916

条件概率:在事件 A A A发生的条件下,求事件 B B B发生的概率。或者在某些事件发生的条件下,求另外的事件发生的概率。

P ( B ∣ A ) P(B|A) P(BA):这表示在事件 A A A发生的条件下,事件 B B B发生的条件概率。

P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)

全概率公式

当条件构成一个全集时,此时某一事件与每个条件的积事件的概率之和即等于该事件单独发生的概率。

P ( B ) = ∑ i P ( B ∣ A i ) P ( A i ) = ∑ i P ( B A i ) P(B)=\sum_{i}P(B|A_i)P(A_i)=\sum_iP(BA_i) P(B)=iP(BAi)P(Ai)=iP(BAi)

其中 A i A_i Ai的和为1.

贝叶斯公式

P ( A ∣ B ) = P ( B ∣ A ) P ( A ) ∑ i P ( B ∣ A i ) P ( A i ) P(A|B)=\frac{P(B|A)P(A)}{\sum_{i}P(B|A_i)P(A_i)} P(AB)=iP(BAi)P(Ai)P(BA)P(A)

独立事件

事件 A A A B B B不相关,则称事件 A , B A, B A,B为独立事件。

此时, P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)

P ( A ∣ B ) = P ( A ) P(A|B)=P(A) P(AB)=P(A)

习题1:

1. 写出下列随机试验的样本空间

(1) 记录一个班一次数学考试的平均分,100分制

(2) 生产产品直到有 10 10 10件正品为止,记录生产产品的总件数

(3) 对某工厂出厂的产品进行检查,合格即为“正品”,不合格的记为“次品”,如果连续查出了两件次品就停止,或检查了四件产品就停止检查,记录检查的结果。

(4) 在单位圆内任意取一点,记录它的坐标。
2. 设 A , B , C A,B,C A,B,C为三个事件,用 A , B , C A,B,C A,B,C的运算关系表示下列各事件:

(1) A A A发生, B , C B,C B,C不发生

(2) A A A B B B都发生,而 C C C不发生

(3) A , B , C A,B,C A,B,C中至少有1个发生

(4) A , B , C A,B,C A,B,C都发生

(5) A , B , C A,B,C A,B,C都不发生

(6) A , B , C A,B,C A,B,C中不多于一个发生

(7) A , B , C A,B,C A,B,C中不多于两个发生

(8) A , B , C A,B,C A,B,C至少有两个发生

3. (1) 设 A , B , C A,B,C A,B,C是三个事件,且 P ( A ) = P ( B ) = P ( C ) = 1 / 4 P(A)=P(B)=P(C)=1/4 P(A)=P(B)=P(C)=1/4, P ( A B ) = P ( B C ) = 0 P(AB)=P(BC)=0 P(AB)=P(BC)=0, P ( A C ) = 1 / 8 P(AC)=1/8 P(AC)=1/8,求 A , B , C A,B,C A,B,C至少有一个发生的概率.

(2) 已知 P ( A ) = 1 / 2 , P ( B ) = 1 / 3 , P ( C ) = 1 / 5 , P ( A B ) = 1 / 10 , P ( A C ) = 1 / 15 , P ( B C ) = 1 / 20 , P ( A B C ) = 1 / 30 P(A)=1/2, P(B)=1/3, P(C)=1/5, P(AB)=1/10, P(AC)=1/15,P(BC)=1/20, P(ABC)=1/30 P(A)=1/2,P(B)=1/3,P(C)=1/5,P(AB)=1/10,P(AC)=1/15,P(BC)=1/20,P(ABC)=1/30,求 A ∪ B A\cup B AB, A ‾ ∩ B ‾ , A ∪ B ∪ C , A ‾ ∩ B ‾ ∩ C ‾ , A ‾ ∩ B ‾ ∩ C , A ‾ ∩ B ‾ ∪ C \overline A \cap \overline B, A \cup B \cup C, \overline A \cap \overline B \cap \overline C,\overline A \cap \overline B \cap C, \overline A \cap \overline B \cup C AB,ABC,ABC,ABC,ABC.

4. 设 A , B A,B A,B是两个事件.
(1) 已知 A B ‾ = A ‾ B , A \overline B=\overline A B, AB=AB,验证 A = B A=B A=B

(2) 验证事件 A A A和事件 B B B恰有一个发生的概率为 P ( A ) + P ( B ) − 2 P ( A B ) P(A)+P(B)-2P(AB) P(A)+P(B)2P(AB)

5. 10片药片中有5片是安慰剂.

(1) 从中任意抽取 5 5 5片,求其中至少 2 2 2片是安慰剂的概率

(2) 从中每次取一片,作不放回抽样,求前 3 3 3次都取得安慰剂的概率

6. 在房间里有 10 10 10个人,分别佩戴从 1 ∼ 10 1 \sim 10 110的纪念章,任选 3 3 3人记录他们的纪念章号码。

(1) 求最小号码为 5 5 5的概率

(2)求最大号码为 7 7 7的概率

7. 某油漆公司发出 17 17 17桶油漆,其中白漆 10 10 10桶,黑漆4桶,红漆3桶,在搬运过程中所有标签脱落,交货人随意将这些油漆发给顾客,问一个订货为4桶白漆,3桶黑漆和2桶红漆的顾客,能按所定颜色如数得到订货的概率是多少?

8. 在1500件产品中有400件次品,1100件正品,任取200件。

(1) 求恰有90件次品的概率

(2) 求至少有两件次品的概率

9. 从5双不同的鞋子中任取4只,问这4只鞋子中至少有两只配成一双的概率是多少?

10. 在11张卡片上分别写上probability这11个字母,从中任意连抽7张,求其排列为ability的概率。

11. 将3只球随机的放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率。

12. 将50只铆钉随机地取来用在10个部件上,其中3只铆钉强度太弱,每个部件用3只铆钉。若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱。问发生一个部件强度太弱的概率是多少?

13. 一俱乐部有5名一年级学生,2名二年级学生,3名三年级学生,2名四年级学生。

(1) 在其中任选4名学生,求一、二、三、四年级的学生各一名的概率

(2) 在其中任选5名学生,求一、二、三、四年级的学生均包含在内的概率。

14. (1) 已知 P ( A ‾ ) = 0.3 , P ( B ) = 0.4 , P ( A B ‾ ) = 0.5 P(\overline A)=0.3, P(B)=0.4, P(A\overline B)=0.5 P(A)=0.3,P(B)=0.4,P(AB)=0.5,求条件概率 P ( B ∣ A ∪ B ‾ ) P(B|A\cup \overline B) P(BAB)的概率。

(2) 已知 P ( A ) = 1 / 4 , P ( B ∣ A ) = 1 / 3 , P ( A ∣ B ) = 1 / 2 P(A)=1/4, P(B|A)=1/3, P(A|B)=1/2 P(A)=1/4,P(BA)=1/3,P(AB)=1/2,求 P ( A ∪ B ) P(A\cup B) P(AB).

15. 掷两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为1点的概率,用两种方法。

16. 据以往资料表明,某一3口之家,设事件 A A A为孩子患某种传染病,事件 B B B为母亲患传染病,事件 C C C为父亲患传染病,有以下规律:

P ( A ) = 0.6 , P ( B ∣ A ) = 0.5 , P ( C ∣ ( A B ) ) = 0.4 P(A)=0.6, P(B|A)=0.5,P(C|(AB))=0.4 P(A)=0.6,P(BA)=0.5,P(C(AB))=0.4

P ( A B C ‾ ) P(AB\overline C) P(ABC).

17. 已知在10件产品中有2件次品,在其中取两次,每次任取意见,作不放回抽样,求下列事件的概率:

(1) 两件都是正品

(2) 两件都是次品

(3) 一件事正品,一件是次品

(4) 第二次取出的是正品

18. 某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过3次而接通所需电话的概率。若已知最后一个数字是奇数,那么此概率是多少?

19. (1).设甲袋中装有 n n n只白球, m m m只红球;乙袋中装有 N N N只白球, M M M只红球,今从甲袋中任意取一只球放入乙袋中,再从乙袋中任意取一只球,问取到白球的概率是多少?

(2).第一只盒子中装有5只红球,4只白球,第二只盒子中装有4只红球,5只白球,先从第一盒中任取2只球放入第二盒中,然后从第二盒中任取一只球,求取到白球的概率。

20. 某产品的商标为MAXAM, 其中有2个字母脱落,有人捡起随意放回,求放回后仍为MAXAM的概率。

21. 已知男子有 5 % 5\% 5%是色盲患者,女子有 0.25 % 0.25\% 0.25%患者,今从男女人数相等的人群中随机挑选一人,恰好是色盲患者,问此人是男性的概率是多少?

22.一学生接连参加同一课程的两次考试,第一次及格的概率为 p p p, 若第一次及格则第二次及格的概率也是 p p p, 若第一次不及格则第二次及格的概率为 p / 2 p/2 p/2.

(1) 若至少有一次及格则他能取得某种资格,求他取得该资格的概率。

(2) 若已知他第二次已经及格,求他第一次及格的概率。

23.将两信息分别编码为 A A A B B B传送出去,接收站收到时, A A A被误收作 B B B的概率为 0.02 0.02 0.02,而 B B B被误收作 A A A的概率为 0.01 0.01 0.01,信息 A A A与信息 B B B传送的频繁程度为 2 : 1 2:1 2:1,若接收站收到的信息是 A A A,问原发信息是 A A A的概率是多少?

24.有两箱同种类的零件,第一箱装50只,其中10只一等品;第二箱装30只,其中18只一等品,今从两箱中任挑出一箱,然后从该箱中取零件两次,每次任取一只,作不放回抽样,求:

(1) 第一次取到零件是一等品的概率

(2) 在第一次取到的零件是一等品的条件下,第二次取到的也是一等品的概率。

25.某人下午5:00下班,他所积累的资料表明:

到家时间 5 : 35 ∼ 5 : 39 5:35\sim 5:39 5:355:39 5 : 40 ∼ 5 : 44 5:40 \sim 5:44 5:405:44 5 : 45 ∼ 5 : 49 5:45 \sim 5:49 5:455:49 5 : 50 ∼ 5 : 54 5:50 \sim 5:54 5:505:54迟于 5 : 54 5:54 5:54
乘地铁在某时间段内到家的概率 0.10 0.10 0.10 0.25 0.25 0.25 0.45 0.45 0.45 0.15 0.15 0.15 0.05 0.05 0.05
乘汽车在某时间段内到家的概率 0.30 0.30 0.30 0.35 0.35 0.35 0.20 0.20 0.20 0.10 0.10 0.10 0.05 0.05 0.05

某日他抛一枚硬币决定乘地铁还是乘汽车,结果他是5:47到家的,试求他是乘地铁回家的概率。

26.病树的主人外出,委托邻居浇水,设已知如果不浇水,树死去的概率为0.8,若浇水则树死去的概率为0.15,有0.9的把握确定邻居会记得浇水。

(1) 求主人回来树还活着的概率

(2) 若主人回来树已死去,求邻居忘记浇水的概率

27.设本题的事件均有意义,设 A , B A,B A,B都是事件。

(1) 已知 P ( A ) > 0 P(A)>0 P(A)>0,证明: P ( A B ∣ A ) ≥ P ( A B ∣ A ∪ B ) P(AB|A)\geq P(AB|A \cup B) P(ABA)P(ABAB)

(2) 若 P ( A ∣ B ) = 1 P(A|B)=1 P(AB)=1,证明: P ( B ‾ ∣ A ‾ ) = 1 P(\overline B | \overline A)=1 P(BA)=1

(3) 若设 C C C也是事件,且有 P ( A ∣ C ) ≥ P ( B ∣ C ) , P ( A ∣ C ‾ ) ≥ P ( B ∣ C ‾ ) P(A|C) \geq P(B|C), P(A| \overline C) \geq P(B|\overline C) P(AC)P(BC),P(AC)P(BC),证明: P ( A ) ≥ P ( B ) P(A)\geq P(B) P(A)P(B).

28.有两种花籽,发芽率分别为 0.8 , 0.9 0.8,0.9 0.8,0.9, 从中各取一颗,设各花籽是否发芽相互独立,求:

(1) 这两颗花籽都能发芽的概率

(2) 至少有一颗能发芽的概率

(3) 恰好有一颗能发芽的概率

29.根据报道美国人血型的分布近似地为:A型为 37 % 37\% 37%, O O O型为 44 % 44\% 44%, B B B型为 13 % 13\% 13%, A B AB AB型为 6 % 6\% 6%,夫妻拥有的血型是相互独立的。

(1) B B B型的人只有输入 B B B O O O两种血型才安全,若妻为 B B B型,夫为何种血型未知,求夫是妻的安全输血者的概率。

(2) 随机地取一对夫妇,求妻为 B B B型,夫为 A A A型的概率

(3) 随机地取一对夫妇,求其中一人为 A A A型,另一人为 B B B型的概率

(4) 随机地取一对夫妇,求其中至少一人是 O O O型的概率

30.(1)给出事件 A , B A,B A,B的例子,使得:

(i) P ( A ∣ B ) < P ( A ) P(A|B)<P(A) P(AB)<P(A)

(ii) P ( A ∣ B ) = P ( A ) P(A|B)=P(A) P(AB)=P(A)

(iii) P ( A ∣ B ) > P ( A ) P(A|B)>P(A) P(AB)>P(A)

(2)设事件 A , B , C A,B,C A,B,C相互独立,证明:

(i) C C C A B AB AB相互独立

(ii) C C C A U B AUB AUB相互独立

31.设事件 A , B A,B A,B的概率均大于0,说明一下的叙述 (1) 必然对;(2) 必然错 (3)可能对

(1) 若 A , B A,B A,B互不相容,则它们相互独立

(2) 若 A , B A,B A,B相互独立,则它们互不相容

(3) P ( A ) = P ( B ) = 0.6 P(A)=P(B)=0.6 P(A)=P(B)=0.6, 且 A , B A,B A,B互不相容

(4) P ( A ) = P ( B ) = 0.6 , P(A)=P(B)=0.6, P(A)=P(B)=0.6, A , B A,B A,B相互独立

32.有一种检验艾滋病毒的检验法,其结果有概率 0.005 0.005 0.005报道为假阳性,今有 140 140 140名不带艾滋病毒的正常人全部接受此种检验,被报道至少一人带艾滋病毒的概率为多少?

33.盒子中有编号为 1 , 2 , 3 , 4 1,2,3,4 1,2,3,4 4 4 4只球,随机地自盒中取一只球,事件 A A A为“取得的是 1 1 1号或 2 2 2号球”, 事件 B B B为“取得的是 1 1 1号或 3 3 3号球”,事件 C C C为“取得的是 1 1 1号或 4 4 4号球",请验证:

P ( A B ) = P ( A ) P ( B ) , P ( A C ) = P ( A ) P ( C ) , P ( B C ) = P ( B ) P ( C ) P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C) P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C),

P ( A B C ) ≠ P ( A ) P ( B ) P ( C ) P(ABC)\neq P(A)P(B)P(C) P(ABC)=P(A)P(B)P(C)

即事件 A , B , C A,B,C A,B,C两两独立,但 A , B , C A,B,C A,B,C不是相互独立的。

34.略

35.如果一危险情况 C C C发生时,一电路闭合并发出警报,我们可以用两个或多个开关并联以改善可靠性,在 C C C发生时,这些开关每一个都应该闭合,且若至少一个开关闭合了,警报就发出。如果两个这样的开关并联连接,它们每个具有0.96的可靠性,问这时系统可靠性是多少?如果想要系统的可靠性至少为0.9999,至少需要多少个这样的开关并联?设开关之间相互独立。

35. (1). 1 − 0.04 ∗ 0.04 = 0.9984 1-0.04*0.04=0.9984 10.040.04=0.9984
(2). 0.0 4 3 = 0.000064 < 0.0001 0.04^3=0.000064<0.0001 0.043=0.000064<0.0001,所以三个够了。

36.三人独立地去破译一份密码,已知各人能译出的概率分别为 1 / 5 , 1 / 3 , 1 / 4 1/5,1/3,1/4 1/5,1/3,1/4, 问三人中至少有一人能将此密码译出的概率是多少?
36. 1 − 4 / 5 ∗ 2 / 3 ∗ 3 / 4 = 3 / 5 1-4/5 * 2/3 * 3/4=3/5 14/52/33/4=3/5
37.设第一只盒子中装有3只蓝球,2只绿球,2只白球;第二只盒子中装有2只蓝球,3只绿球,4只白球,独立地分别在两只盒中中各取一只球。

(1) 求至少有一只蓝球的概率
3 / 7 + 2 / 9 − 3 / 7 ∗ 2 / 9 = 5 / 9 3/7+2/9-3/7*2/9=5/9 3/7+2/93/72/9=5/9

(2) 求有一只蓝球一只白球的概率
3 / 7 ∗ 4 / 9 + 2 / 7 ∗ 2 / 9 = 16 / 63 3/7*4/9+2/7*2/9=16/63 3/74/9+2/72/9=16/63

(3) 已知至少有一只蓝球,求有一只蓝球一只白球的概率;
A 1 A_1 A1表示刚好有一只蓝球, A 2 A_2 A2表示刚好有两只蓝球, B B B表示有一只蓝球和一只白球。
P ( B ∣ ( A 1 ∪ A 2 ) ) = P ( B ( A 1 + A 2 ) ) / P ( A 1 + A 2 ) = P ( B A 1 ) / P ( A 1 + A 2 ) = P ( B ) / P ( A 1 + A 2 ) = ( 16 / 63 ) / ( 5 / 9 ) = 16 / 35 P(B|(A_1 \cup A_2))=P(B(A_1+A_2))/P(A_1+A_2)=P(BA_1)/P(A_1+A_2)=P(B)/P(A_1+A_2)=(16/63)/(5/9)=16/35 P(B(A1A2))=P(B(A1+A2))/P(A1+A2)=P(BA1)/P(A1+A2)=P(B)/P(A1+A2)=(16/63)/(5/9)=16/35
38.袋中装有 m m m枚正品硬币、 n n n枚次品硬币(次品硬币的两面均印有国徽), 在袋中任取一枚,将它投掷 r r r次,已知每次都得到国徽,问这枚硬币是正品的概率是多少?
设事件 A A A表示掷 r r r次都是国徽,事件 B B B表示硬币是正品。
P ( B ∣ A ) = P ( A B ) / P ( A ) = m m + n m m + n + n m + n 2 r P(B|A)=P(AB)/P(A)=\frac{\frac{m}{m+n}}{\frac{m}{m+n}+\frac{n}{m+n}2^r} P(BA)=P(AB)/P(A)=m+nm+m+nn2rm+nm

39.设根据以往记录的数据分析,某船只运输的某种物品损坏的情况共有三种:损坏 2 % 2\% 2%(这一事件即为 A A A), 损坏 10 % 10\% 10%(事件 A 2 A_2 A2), 损坏*(事件 A 3 A_3 A3).且知 P ( A 1 ) = 0.8 , P ( A 2 ) = 0.14 , P ( A 3 ) = 0.05 P(A1)=0.8,P(A2)=0.14,P(A_3)=0.05 P(A1)=0.8,P(A2)=0.14,P(A3)=0.05, 现在从已被运输的物品中随机地取 3 3 3件,发现这 3 3 3件都是好的(这一事件记为 B B B),试求 P ( A 1 ∣ B ) , P ( A 2 ∣ B ) , P ( A 3 ∣ B ) P(A_1|B),P(A_2|B),P(A_3|B) P(A1B),P(A2B),P(A3B).(这里设物品件数很多,取出一件后不影响后一件是否为好品的概率)

40.将 A , B , C A,B,C A,B,C三个字母之一输入信道,输出为原字母的概率为 α \alpha α,而输出位其他一字母的概率都是 ( 1 − α ) / 2 (1-\alpha)/2 (1α)/2, 今将字母串AAAA,BBBB,CCCC之一输入信道,输入AAAA,BBBB,CCCC的概率分别为 p 1 , p 2 , p 3 ( p 1 + p 2 + p 3 = 1 ) p1,p2,p3(p1+p2+p3=1) p1,p2,p3(p1+p2+p3=1),已知输出为ABCA,问输入的是AAAA的概率是多少?(设信道传输各个字母的工作是相互独立的。)

40. 分析:
设事件 A A A表示输入为 A A A A AAAA AAAA, 事件 B B B表示输入为 B B B B BBBB BBBB, 事件 C C C表示输入为 C C C C CCCC CCCC, 事件 D D D表示输出为 A B C A ABCA ABCA.
则答案为 P ( A ∣ D ) P(A|D) P(AD).
先求 P ( D ∣ A ) , P ( D ∣ B ) , P ( D ∣ C ) P(D|A), P(D|B), P(D|C) P(DA),P(DB),P(DC).
P ( D ∣ A ) = α 2 ( 1 − α ) 2 / 4 , P ( D ∣ B ) = α ( 1 − α ) 3 / 8 , P ( D ∣ C ) = α ( 1 − α ) 3 / 8 P(D|A)=\alpha^2(1-\alpha)^2/4, P(D|B)=\alpha(1-\alpha)^3/8,P(D|C)=\alpha(1-\alpha)^3/8 P(DA)=α2(1α)2/4,P(DB)=α(1α)3/8,P(DC)=α(1α)3/8.
根据贝叶斯公式:
P ( A ∣ D ) = P ( D ∣ A ) ∗ P ( A ) P ( D ∣ A ) ∗ P ( A ) + P ( D ∣ B ) ∗ P ( B ) + P ( D ∣ C ) ∗ P ( C ) = p 1 α 2 ( 1 − α ) 2 / 4 p 1 α 2 ( 1 − α ) 2 / 4 + p 2 α ( 1 − α ) 3 / 8 + p 3 α ( 1 − α ) 3 / 8 = 2 α p 1 α + ( 1 − p 1 ) ( 1 − α ) P(A|D)=\frac{P(D|A)*P(A)}{P(D|A)*P(A)+P(D|B)*P(B)+P(D|C)*P(C)} =\frac{ p_1 \alpha^2(1-\alpha)^2/4}{p_1 \alpha^2(1-\alpha)^2/4+p_2\alpha(1-\alpha)^3/8+p_3\alpha(1-\alpha)^3/8}=\frac{2\alpha}{p_1\alpha+(1-p_1)(1-\alpha)} P(AD)=P(DA)P(A)+P(DB)P(B)+P(DC)P(C)P(DA)P(A)=p1α2(1α)2/4+p2α(1α)3/8+p3α(1α)3/8p1α2(1α)2/4=p1α+(1p1)(1α)2α

答案:

1.(1) { i / n ∣ 0 ≤ i ≤ 100 n } \{i/n | 0 \leq i \leq 100n\} {i/n∣0i100n}

(2). { 10 , 11 , … , } \{10,11,\dots,\} {10,11,,}

(3).设合格为 1 1 1,不合格为 0 0 0.

样本空间 S S S为: { 00 , 0100 , 0101 , 0110 , 0111 , 100 , 1010 , 1011 , 1100 , 1101 , 1110 , 1111 } \{00,0100,0101,0110,0111,100,1010,1011,1100,1101,1110,1111\} {00,0100,0101,0110,0111,100,1010,1011,1100,1101,1110,1111}

(4). { ( x , y ) ∣ 0 ≤ ∣ x ∣ , ∣ y ∣ ≤ 1 } \{(x,y)| 0 \leq |x|,|y| \leq 1\} {(x,y)∣0x,y1}

2.(1) A ∩ B ‾ ∩ C ‾ A \cap \overline B \cap \overline C ABC

(2) A ∩ B ∩ C ‾ A \cap B \cap \overline C ABC

(3) A ∪ B ∪ C A \cup B \cup C ABC

(4) A ∩ B ∩ C A \cap B \cap C ABC

(5) A ∪ B ∪ C ‾ \overline{A \cup B \cup C} ABC A ‾ ∩ B ‾ ∩ C ‾ \overline A \cap \overline B \cap \overline C ABC

(6) A ∪ B ‾ ∪ A ∪ C ‾ ∪ B ∪ C ‾ \overline{A \cup B} \cup \overline{A \cup C} \cup \overline{B \cup C} ABACBC

(7) A ‾ ∪ B ‾ ∪ C ‾ \overline A \cup \overline B \cup \overline C ABC

(8) A B ∪ A C ∪ B C AB \cup AC \cup BC ABACBC

3.(1) P ( A ∪ B ∪ C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) = 3 / 4 − 1 / 8 = 5 / 8 P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) -P(AC) - P(BC) + P(ABC) =3/4 - 1/8 = 5/8 P(ABC)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)=3/41/8=5/8

(2) P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) = 1 / 2 + 1 / 3 − 1 / 10 = 11 / 15 P(A\cup B)=P(A)+P(B)-P(AB)=1/2+1/3-1/10=11/15 P(AB)=P(A)+P(B)P(AB)=1/2+1/31/10=11/15

P ( A ‾ ∩ B ‾ ) = P ( A ∪ B ‾ ) = 1 − 11 / 15 = 4 / 15 P(\overline A \cap \overline B)=P(\overline{A\cup B})=1-11/15=4/15 P(AB)=P(AB)=111/15=4/15

P ( A ∪ B ∪ C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) = 1 / 2 + 1 / 3 + 1 / 5 − 1 / 10 − 1 / 15 − 1 / 20 + 1 / 30 = 17 / 20 P(A\cup B \cup C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)=1/2+1/3+1/5-1/10-1/15-1/20+1/30=17/20 P(ABC)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)=1/2+1/3+1/51/101/151/20+1/30=17/20

P ( A ‾ ∩ B ‾ ∩ C ‾ ) = 1 − P ( A ∪ B ∪ C ) = 3 / 20 P(\overline A \cap \overline B \cap \overline C) = 1-P(A \cup B \cup C) = 3/20 P(ABC)=1P(ABC)=3/20

P ( A ‾ ∩ B ‾ ∩ C ) = P ( A ‾ ∩ B ‾ ) − P ( ( A ‾ ∩ B ‾ ) ∩ C ‾ ) = 4 / 15 − 3 / 20 = 7 / 60 P(\overline A \cap \overline B \cap C)=P(\overline A \cap \overline B) - P((\overline A \cap \overline B) \cap \overline C)=4/15-3/20=7/60 P(ABC)=P(AB)P((AB)C)=4/153/20=7/60

P ( A ‾ ∩ B ‾ ∪ C ) = P ( A ‾ ∩ B ‾ ) + P ( C ) − P ( A ‾ ∩ B ‾ ∩ C ) = 4 / 15 + 1 / 5 − 7 / 60 = 7 / 20 P(\overline A \cap \overline B \cup C)=P(\overline A \cap \overline B) + P(C) - P(\overline A \cap \overline B \cap C) = 4/15 + 1/5 - 7/60 = 7/20 P(ABC)=P(AB)+P(C)P(ABC)=4/15+1/57/60=7/20

4.(1)正确。若 A B ‾ = A ‾ B A \overline B=\overline A B AB=AB, 则有 A = B A=B A=B.

证明: A B ‾ = A ‾ B ⇒ A B ‾ ∪ ( A ‾ ∩ B ‾ ) = ( A ‾ B ) ∪ ( A ‾ ∩ B ‾ ) A \overline B=\overline A B\Rightarrow A\overline B \cup (\overline A \cap \overline B) = (\overline A B) \cup (\overline A \cap\overline B) AB=ABAB(AB)=(AB)(AB)

⇒ ( A ∪ A ‾ ) ∩ B ‾ = A ‾ ∩ ( B ∪ B ‾ ) \Rightarrow (A \cup \overline A) \cap \overline B = \overline A \cap (B \cup \overline B) (AA)B=A(BB)

⇒ B ‾ = A ‾ \Rightarrow \overline B = \overline A B=A

⇒ B = A \Rightarrow B = A B=A

(2) 证明: A , B A,B A,B恰有一个发生的概率为:

P ( A ∪ B ) − P ( A B ) = P ( A ) + P ( B ) − P ( A B ) − P ( A B ) = P ( A ) + P ( B ) − 2 P ( A B ) P(A\cup B)-P(AB)=P(A)+P(B)-P(AB)-P(AB)=P(A)+P(B)-2P(AB) P(AB)P(AB)=P(A)+P(B)P(AB)P(AB)=P(A)+P(B)2P(AB).

5.(1) 1 − 1 + ( 5 1 ) ( 5 4 ) ( 10 5 ) = 113 / 126 1 - \frac{1+\binom{5}{1}\binom{5}{4}}{\binom{10}{5}}=113/126 1(510)1+(15)(45)=113/126

(2) 5 / 10 × 4 / 9 × 3 / 8 = 1 / 12 5/10\times 4/9 \times 3/8=1/12 5/10×4/9×3/8=1/12

6.(1) ( 5 2 ) ( 10 3 ) = 1 / 12 \frac{\binom{5}{2}}{\binom{10}{3}}=1/12 (310)(25)=1/12, (2) ( 6 2 ) ( 10 3 ) = 1 / 8 \frac{\binom{6}{2}}{\binom{10}{3}}=1/8 (310)(26)=1/8

7. ( 10 4 ) ( 4 3 ) ( 3 2 ) ( 17 9 ) \frac{\binom{10}{4}\binom{4}{3}\binom{3}{2}}{\binom{17}{9}} (917)(410)(34)(23)

8.(1) ( 400 90 ) ( 1100 110 ) ( 1500 200 ) \frac{\binom{400}{90}\binom{1100}{110}}{\binom{1500}{200}} (2001500)(90400)(1101100)

(2) 1 − ( 1100 200 ) + ( 1100 199 ) ( 400 1 ) ( 1500 200 ) 1-\frac{\binom{1100}{200}+\binom{1100}{199}\binom{400}{1}}{\binom{1500}{200}} 1(2001500)(2001100)+(1991100)(1400)

9. 1 − ( 5 4 ) ( 2 1 ) 4 ( 10 4 ) = 13 / 21 1-\frac{\binom{5}{4}{\binom{2}{1}}^4}{\binom{10}{4}}=13/21 1(410)(45)(12)4=13/21

10. 1 / 415800 ≈ 0.0000024 1/415800 \approx 0.0000024 1/4158000.0000024

11.(1) 3 / 8 , 9 / 16 , 1 / 16 3/8,9/16,1/16 3/8,9/16,1/16

12. ( 47 27 ) ( 50 30 ) × 10 × ( 27 3 ) … ( 3 3 ) ( 30 3 ) ( 27 3 ) … ( 3 3 ) \frac{\binom{47}{27}}{\binom{50}{30}}\times \frac{10\times \binom{27}{3}\dots \binom{3}{3}}{\binom{30}{3}\binom{27}{3}\dots \binom{3}{3}} (3050)(2747)×(330)(327)(33)10×(327)(33)=1/1960

10个部件是不同的,考虑了它们的顺序,而同一个部件的3个铆钉不需要考虑其顺序。

13.(1) 5 × 2 × 3 × 2 ( 12 4 ) = 60 × 24 12 × 11 × 10 × 9 = 4 / 33 \frac{5\times 2 \times 3 \times 2}{\binom{12}{4}}=\frac{60\times 24}{12\times 11 \times 10 \times 9}=4/33 (412)5×2×3×2=12×11×10×960×24=4/33

(2) ( 5 2 ) × 2 × 3 × 2 + 5 × ( 2 2 ) × 3 × 2 + 5 × 2 × ( 3 2 ) × 2 + 5 × 2 × 3 ( 2 2 ) ( 12 5 ) \frac{\binom{5}{2}\times 2 \times 3 \times 2 + 5 \times \binom{2}{2} \times 3 \times 2+ 5 \times 2 \times \binom{3}{2} \times 2 + 5 \times 2 \times 3 \binom{2}{2}}{\binom{12}{5}} (512)(25)×2×3×2+5×(22)×3×2+5×2×(23)×2+5×2×3(22)= 120 + 30 + 60 + 30 11 × 9 × 8 = 10 33 . \frac{120+30+60+30}{11\times 9 \times 8}=\frac{10}{33}. 11×9×8120+30+60+30=3310.

(1) ∵ P ( B ‾ ∣ A ∪ B ‾ ) = P ( B ‾ ∩ ( A ∪ B ‾ ) ) P ( A ∪ B ‾ ) = P ( B ‾ ) P ( A ) + P ( B ‾ ) − P ( A B ‾ ) = 0.6 0.7 + 0.6 − 0.5 = 0.75 \because P(\overline B|A\cup \overline B)=\frac{P(\overline B \cap (A\cup \overline B))}{P(A\cup \overline B)}=\frac{P(\overline B)}{P(A)+P(\overline B)-P(A\overline B)}=\frac{0.6}{0.7+0.6-0.5}=0.75 P(BAB)=P(AB)P(B(AB))=P(A)+P(B)P(AB)P(B)=0.7+0.60.50.6=0.75
∴ P ( B ∣ A ∪ B ‾ ) = 1 − P ( B ∣ A ∪ B ‾ ) = 0.25 \therefore P(B|A \cup \overline B) = 1-P(B|A\cup\overline B)=0.25 P(BAB)=1P(BAB)=0.25

(2). P ( A B ) = P ( A ) P ( B ∣ A ) = 1 / 12 , P ( B ) = P ( A B ) P ( A ∣ B ) = 1 / 6 P(AB)=P(A)P(B|A)=1/12, P(B)=\frac{P(AB)}{P(A|B)}=1/6 P(AB)=P(A)P(BA)=1/12,P(B)=P(AB)P(AB)=1/6
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) = 1 / 4 + 1 / 6 − 1 / 12 = 1 / 3 P(A\cup B)=P(A)+P(B)-P(AB)=1/4+1/6-1/12=1/3 P(AB)=P(A)+P(B)P(AB)=1/4+1/61/12=1/3

15.解法一:设事件 A A A表示骰子的点数之和为 7 7 7, 事件 B B B表示有一颗骰子为 1 1 1, 则:

P ( B ∣ A ) = P ( A B ) P ( A ) = 1 / 18 6 × 1 / 36 = 1 / 3 P(B|A)=\frac{P(AB)}{P(A)}=\frac{1/18}{6\times 1/36}=1/3 P(BA)=P(A)P(AB)=6×1/361/18=1/3

解法二:骰子点数之和为7有三种可能:{2,5},{3,4},{1,5}, 每种都是等概率的,所以,出现其中一个为 1 1 1点的概率是 1 / 3 1/3 1/3.

16.设 A A A表示孩子患病, B B B表示母亲患病, C C C表示父亲患病。

已知 P ( A ) = 0.6 , P ( B ∣ A ) = 0.5 , P ( C ∣ A B ) = 0.4 P(A)=0.6,P(B|A)=0.5,P(C|AB)=0.4 P(A)=0.6,P(BA)=0.5,P(CAB)=0.4, 求 P ( C ‾ A B ) P(\overline CAB) P(CAB).

P ( C ‾ ∣ A B ) = 1 − P ( C ∣ A B ) = 0.6 P(\overline C|AB)=1-P(C|AB)=0.6 P(CAB)=1P(CAB)=0.6

P ( C ‾ A B ) = P ( C ‾ ∣ A B ) × P ( A B ) = 0.6 × P ( A ) × P ( B ∣ A ) = 0.6 × 0.6 × 0.5 = 0.18 P(\overline CAB)=P(\overline C|AB)\times P(AB)=0.6 \times P(A) \times P(B|A)=0.6\times 0.6 \times 0.5=0.18 P(CAB)=P(CAB)×P(AB)=0.6×P(A)×P(BA)=0.6×0.6×0.5=0.18

17.(1) 8 10 × 7 9 = 28 45 \frac{8}{10} \times \frac{7}{9}=\frac{28}{45} 108×97=4528, 或者 ( 8 2 ) ( 10 2 ) = 28 56 \frac{\binom{8}{2}}{\binom{10}{2}}=\frac{28}{56} (210)(28)=5628

(2) 2 10 × 1 9 = 1 45 \frac{2}{10}\times \frac{1}{9}=\frac{1}{45} 102×91=451

(3) 8 × 2 ( 10 2 ) = 16 45 \frac{8 \times 2}{\binom{10}{2}}=\frac{16}{45} (210)8×2=4516, 或者 2 10 × 8 9 + 8 10 × 2 9 = 16 45 \frac{2}{10} \times \frac{8}{9}+\frac{8}{10}\times \frac{2}{9}=\frac{16}{45} 102×98+108×92=4516

(4) 8 10 × 2 9 + 2 10 × 1 9 = 8 45 + 1 45 = 1 5 \frac{8}{10} \times \frac{2}{9} + \frac{2}{10}\times \frac{1}{9} = \frac{8}{45} + \frac{1}{45} = \frac{1}{5} 108×92+102×91=458+451=51 或者:因为它等于取两次第一个是次品的概率,答案是 P = 2 10 = 1 5 P=\frac{2}{10}=\frac{1}{5} P=102=51

18.(1) 1 10 + 9 10 × 1 10 + ( 9 10 ) 2 × 1 10 = 271 1000 \frac{1}{10}+\frac{9}{10}\times \frac{1}{10} + (\frac{9}{10})^2 \times \frac{1}{10}=\frac{271}{1000} 101+109×101+(109)2×101=1000271

(2) 1 5 + 4 5 × 1 5 + ( 4 5 ) 2 × 1 5 \frac{1}{5}+\frac{4}{5}\times \frac{1}{5} +(\frac{4}{5})^2\times \frac{1}{5} 51+54×51+(54)2×51= 61 125 \frac{61}{125} 12561

19.(1) n m + n × N + 1 N + M + 1 + m m + n × N N + M + 1 \frac{n}{m+n}\times \frac{N+1}{N+M+1} + \frac{m}{m+n} \times \frac{N}{N+M+1} m+nn×N+M+1N+1+m+nm×N+M+1N

(2) 从第一个盒子中取出 2 2 2个球,为两个红球的概率是: 5 9 × 4 8 = 5 18 \frac{5}{9} \times \frac{4}{8}=\frac{5}{18} 95×84=185, 为两个白球的概率为: 4 9 × 3 8 = 1 6 \frac{4}{9} \times \frac{3}{8}=\frac{1}{6} 94×83=61, 为一红一白的概率为: 5 9 × 4 8 + 4 9 × 5 8 = 5 9 \frac{5}{9} \times \frac{4}{8} + \frac{4}{9} \times \frac{5}{8} = \frac{5}{9} 95×84+94×85=95

将取出的2个球放入第二个盒子,再从第二个盒子中取出一个球,取到白球的概率为:

5 18 × 5 11 + 1 6 × 7 11 + 5 9 × 6 11 \frac{5}{18} \times \frac{5}{11} + \frac{1}{6} \times \frac{7}{11} + \frac{5}{9} \times \frac{6}{11} 185×115+61×117+95×116= 53 99 \frac{53}{99} 9953

20. 1 2 + 1 2 × 2 ( 2 5 ) = 3 5 \frac{1}{2} + \frac{1}{2} \times \frac{2}{\binom{2}{5}}=\frac{3}{5} 21+21×(52)2=53

21. 20 21 \frac{20}{21} 2120

22.(1) p + ( 1 − p ) × ( p / 2 ) = ( 3 p − p 2 ) 2 p+(1-p)\times (p/2)=\frac{(3p-p^2)}{2} p+(1p)×(p/2)=2(3pp2)

(2)设 A A A表示第一次及格, B B B表示第二次及格。

P ( A ∣ B ) = P ( A B ) P ( B ) = p 2 p 2 + ( 1 − p ) p / 2 = 2 p 2 p 2 + p P(A|B)=\frac{P(AB)}{P(B)}=\frac{p^2}{p^2+(1-p)p/2}=\frac{2p^2}{p^2+p} P(AB)=P(B)P(AB)=p2+(1p)p/2p2=p2+p2p2

23. 196 197 \frac{196}{197} 197196

24.(1) 2 5 \frac{2}{5} 52

(2) 0.4856 0.4856 0.4856

25. 0.6923 0.6923 0.6923

26.(1) 0.785

(2) 0.372

27.易证

28.(1) 0.8 × 0.9 0.8 \times 0.9 0.8×0.9 (2) 1 − 0.2 × 0.1 1-0.2\times0.1 10.2×0.1 (3) 0.8 × 0.1 + 0.9 × 0.2 0.8\times 0.1 + 0.9 \times 0.2 0.8×0.1+0.9×0.2

29.(1)57% (2) 0.0481 0.0481 0.0481, (3) 0.0962 0.0962 0.0962, (4) 0.0684 0.0684 0.0684

30.略

31.(1)必然错 (2)必然错 (3) 必然错 (4) 可能对

32. 1 − 0.99 5 140 ≈ 0.5043 1-0.995^{140}\approx0.5043 10.9951400.5043

33.根据 A , B , C A,B,C A,B,C的定义,显然有: P(ABC)=0, P(AB)=1/4, P(BC)=1/4, P(AC)=1/4。
根据已知条件,有P(A)=1/2, P(B)=1/2, P©=1/2.
所以 P ( A B ) = P ( A ) P ( B ) , P ( A C ) = P ( A ) P ( C ) , P ( B C ) = P ( B ) P ( C ) P(AB)=P(A)P(B), P(AC)=P(A)P(C), P(BC)=P(B)P(C) P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C).
P ( A B C ) ≠ P ( A ) P ( B ) P ( C ) P(ABC) \neq P(A)P(B)P(C) P(ABC)=P(A)P(B)P(C).
得证
34.

  • 11
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值