PyTorch安装

Windows

2018年4月25日,PyTorch 官方发布 0.4.0 版本,该版本的PyTorch 有多项重大更新,其中最重要的改进是支持 Windows 系统。Windows用户能直接通过conda、pip和源码编译三种方式来安装Pytorch,不过需要强调Windows下的Pytorch仅支持Python3.5和Python3.6,不支持其他的Python3版本,也不支持Python2。我们在官网就能看到相应的安装方式.

方法一:pip安装

Python3.6 + pip安装gpu版本
目前gpu版本支持cuda8.0,cuda9.0和cuda9.1,请选择对应的版本下载安装,不要同时执行下面三个命令!

pip install http://download.pytorch.org/whl/cu80/torch-0.4.0-cp36-cp36m-win_amd64.whl  
pip install http://download.pytorch.org/whl/cu90/torch-0.4.0-cp36-cp36m-win_amd64.whl 
pip install http://download.pytorch.org/whl/cu91/torch-0.4.0-cp36-cp36m-win_amd64.whl 

Python3.5+pip安装gpu版本
目前gpu版本支持cuda8.0,cuda9.0和cuda9.1,请选择对应的版本下载安装,不要同时执行下面三个命令!

pip install http://download.pytorch.org/whl/cu80/torch-0.4.0-cp35-cp35m-win_amd64.whl
pip install http://download.pytorch.org/whl/cu90/torch-0.4.0-cp35-cp35m-win_amd64.whl
pip install http://download.pytorch.org/whl/cu91/torch-0.4.0-cp35-cp35m-win_amd64.whl

方法二:Conda安装

如果你是Anaconda用户,就不需要区分Python3.5和Python3.6,执行命令:

conda install pytorch -c pytorch 

就可以完成安装。不过这个默认安装的是cuda8.0的gpu版本,如果你需要安装cuda9.0或cuda1.0的gpu版本,请执行:

conda install pytorch cuda90 -c pytorch 

或者

conda install pytorch cuda91 -c pytorch 

来进行安装。

PS: 我在用conda(Python 3.5中进行安装时),无法正常下载,采用pip进行安装,可以正常安装.

测试安装是否成功

import torch
print(torch.__version__)

如果输出0.4.0,那么恭喜Windows下的PyTorch0.4.0安装成功!

最后需要安装 torchvision:

pip install torchvision

一般gpu版本配置需要cuDNN,而cuDNN需要注册才能下载,下载速度太慢,有网友提供两个百度云的下载链接,cuDNN安装教程见这里

Win10-x64+CUDA8+cuDNN v7
Win10-x64+CUDA8+cuDNN v6

更新pip到pip3

pytorch 1.0安装时用conda无法完成下载,只能用pip安装

pip3 install https://download.pytorch.org/whl/cu90/torch-1.0.0-cp36-cp36m-win_amd64.whl
pip3 install torchvision

,但是pytorch 1.0版本需要pip3版本,需要将pip升级到pip3,有两种方式:

  1. python -m pip install --upgrade pip
  2. conda install mingw libpython
    网上大多数的文章都推荐第二种方法,但是我无法使用,用第一种方法完成升级(记得要在Anaconda3的Prompt中执行)
### 如何在不同环境下安装PyTorch #### 创建虚拟环境 为了确保项目的独立性和稳定性,建议在安装PyTorch前先创建一个专门的虚拟环境。这可以通过Conda工具轻松实现。具体命令如下: ```bash conda create -n pytorch_env python=3.9 ``` 上述命令会创建名为`pytorch_env`的虚拟环境,并指定Python版本3.9[^1]。 激活该虚拟环境的命令为: ```bash conda activate pytorch_env ``` 此时,您已成功切换至新创建的虚拟环境中工作[^4]。 #### 查找合适的PyTorch版本 进入PyTorch官方网站 (https://pytorch.org/get-started/previous-versions/) 可以找到适合您的CUDA版本对应的PyTorch安装指令。例如,如果您使用的CUDA版本为11.7,则可以在页面上通过快捷键Ctrl+F搜索关键字“11.7”,从而定位到相应的安装命令[^5]。 #### 安装PyTorch 假设目标是安装支持GPU加速的PyTorch-GPU版,可以运行以下命令完成安装操作: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.7 -c pytorch -c nvidia ``` 此条命令不仅包含了PyTorch核心包及其依赖项(如`torchvision`, `torchaudio`),还指定了特定版本CUDA Toolkit作为驱动程序的一部分[^2]。 如果仅需CPU版本而无需考虑GPU兼容性的话,那么可以直接简化成这样一条语句来执行安装过程: ```bash conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` 这条命令适用于那些不打算利用图形处理器来进行计算的情况下的开发场景[^4]。 #### 验证安装结果 最后一步非常重要——验证刚刚所做的一切是否正常运作。启动Python解释器并尝试导入模块即可初步判断其状态良好与否: ```python import torch print(torch.__version__) print(torch.cuda.is_available()) ``` 这段脚本能够打印当前加载的PyTorch库的具体版本号以及检测是否存在可用的CUDA设备资源情况[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值