正题
在数学中,群表示一个拥有满足封闭性、满足结合律、有单位元、有逆元的二元运算的代数结构,包括阿贝尔群。
置换,简单来说就是对元素来进行一种重排列,即 [ 1 , n ] [1,n] [1,n] 映射到 [ 1 , n ] [1,n] [1,n]。
比如排列
[
1
,
3
]
[1,3]
[1,3] 的全部置换,单位元为
{
1
,
2
,
3
}
\left\{1,2,3\right\}
{1,2,3},
{
2
,
3
,
1
}
\left\{2,3,1\right\}
{2,3,1} 的逆元为
{
3
,
1
,
2
}
\left\{3,1,2\right\}
{3,1,2}。
但是
{
2
,
3
,
1
}
\left\{2,3,1\right\}
{2,3,1} 和
{
1
,
2
,
3
}
\left\{1,2,3\right\}
{1,2,3} 构成的集合不是群,因为
{
2
,
3
,
1
}
\left\{2,3,1\right\}
{2,3,1} 没有逆元,而且
{
2
,
3
,
1
}
\left\{2,3,1\right\}
{2,3,1}
{
2
,
3
,
1
}
\left\{2,3,1\right\}
{2,3,1}=
{
3
,
1
,
2
}
\left\{3,1,2\right\}
{3,1,2}也不在。
群
Burnside引理
对于一个置换群
G
G
G ,若一个染色方案
S
S
S 在置换
g
i
g_i
gi 后不变,那么称
S
S
S 在
g
i
g_i
gi 作用下为不动点,即最小循环节为
1
1
1,将
g
i
g_i
gi 作用下最小循环节为
k
k
k 的染色方案数量设为
c
k
(
g
i
)
c_k(g_i)
ck(gi)。若通过置换群
G
G
G 作用后可以相等的元素称作一个等价类,那么等价类的数量为:
l
=
1
∣
G
∣
∑
i
=
1
∣
G
∣
c
1
(
g
i
)
l=\frac 1 {|G|}\sum_{i=1}^{|G|} c_1(g_i)
l=∣G∣1i=1∑∣G∣c1(gi)
证明略
Polya定理
实质上就是Burnside引理的具体化,在颜色集合为
k
k
k 的情况下,等价类的数量为:
l
=
1
∣
G
∣
∑
i
=
1
∣
G
∣
k
σ
(
g
i
)
l=\frac 1 {|G|}\sum_{i=1}^{|G|} k^{\sigma(g_i)}
l=∣G∣1i=1∑∣G∣kσ(gi)
其中
σ
(
g
i
)
\sigma(g_i)
σ(gi) 表示置换
g
i
g_i
gi 中置换环的数量。