群论:Burnside引理与Polya定理

正题

在数学中,群表示一个拥有满足封闭性、满足结合律、有单位元、有逆元的二元运算的代数结构,包括阿贝尔群。

置换,简单来说就是对元素来进行一种重排列,即 [ 1 , n ] [1,n] [1,n] 映射到 [ 1 , n ] [1,n] [1,n]

比如排列 [ 1 , 3 ] [1,3] [1,3] 的全部置换,单位元为 { 1 , 2 , 3 } \left\{1,2,3\right\} {1,2,3} { 2 , 3 , 1 } \left\{2,3,1\right\} {2,3,1} 的逆元为 { 3 , 1 , 2 } \left\{3,1,2\right\} {3,1,2}
但是 { 2 , 3 , 1 } \left\{2,3,1\right\} {2,3,1} { 1 , 2 , 3 } \left\{1,2,3\right\} {1,2,3} 构成的集合不是群,因为 { 2 , 3 , 1 } \left\{2,3,1\right\} {2,3,1} 没有逆元,而且 { 2 , 3 , 1 } \left\{2,3,1\right\} {2,3,1} { 2 , 3 , 1 } \left\{2,3,1\right\} {2,3,1}= { 3 , 1 , 2 } \left\{3,1,2\right\} {3,1,2}也不在。

Burnside引理

对于一个置换群 G G G ,若一个染色方案 S S S 在置换 g i g_i gi 后不变,那么称 S S S g i g_i gi 作用下为不动点,即最小循环节为 1 1 1,将 g i g_i gi 作用下最小循环节为 k k k 的染色方案数量设为 c k ( g i ) c_k(g_i) ck(gi)。若通过置换群 G G G 作用后可以相等的元素称作一个等价类,那么等价类的数量为: l = 1 ∣ G ∣ ∑ i = 1 ∣ G ∣ c 1 ( g i ) l=\frac 1 {|G|}\sum_{i=1}^{|G|} c_1(g_i) l=G1i=1Gc1(gi)
证明略

Polya定理

实质上就是Burnside引理的具体化,在颜色集合为 k k k 的情况下,等价类的数量为: l = 1 ∣ G ∣ ∑ i = 1 ∣ G ∣ k σ ( g i ) l=\frac 1 {|G|}\sum_{i=1}^{|G|} k^{\sigma(g_i)} l=G1i=1Gkσ(gi)
其中 σ ( g i ) \sigma(g_i) σ(gi) 表示置换 g i g_i gi 中置换环的数量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值