图像的阈值与平滑处理

图像的阈值

在这里插入图片描述
五种阈值选择方法差异对比:
在这里插入图片描述

图像平滑处理

原始图像
1、均值滤波

# 均值滤波
blur = cv2.blur(img, (3, 3))
cv2.imshow('image', blur)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述
2、方框滤波

box = cv2.boxFilter(img, -1, (3, 3), normalize=False)
cv2.imshow('image', box)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述
3、高斯滤波

# 高斯滤波
aussian = cv2.GaussianBlur(img, (5, 5), 1)
cv2.imshow('image', aussian)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述
4、中值滤波

# 中值滤波
median = cv2.medianBlur(img, 5)
cv2.imshow('image', median)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述
几种滤波方法的对比:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值