【矩阵快速幂】


矩阵快速幂

矩阵快速幂可以将数列求通项问题用 O l o g n Olog{n} Ologn的时间复杂度求出


看个例子:

P1939 矩阵加速(数列)

题目简述:

有通项公式:
a n = 1 , n ∈ { 1 , 2 , 3 } a_n=1,n\in\{1,2,3\} an=1,n{1,2,3}
a n = a n − 1 + a n − 3 a_n=a_{n-1}+a_{n-3} an=an1+an3

求第n项的值,并对 1 0 9 + 7 10^{9}+7 109+7取余

数据范围:

1 ≤ n ≤ 1 0 9 1\leq n\leq10^9 1n109


显然,我们不能暴力递归,即使用动归的方式也只能将复杂度降到 O ( N ) O(N) O(N)
也会TLE。

我们可以试着列出前几项,这里我是从0开始编号的。
a i = 0 , 1 , 1 , 1 , 2 , 3 , 4 , 6 , . . . . . . , i ∈ { 0 , 1 , 2 , . . . n } {a_i} = {0 , 1 , 1 , 1 , 2 , 3 , 4 , 6 , ......} , i\in{\{0 , 1 , 2 ,...n\}} ai=0,1,1,1,2,3,4,6,......,i{0,1,2,...n}
a 0 = 0 , a 1 = 1 , a 2 = 1 , a 3 = 1 , a 4 = 2..... a_0 = 0 , a_1 = 1 , a_2 = 1 , a_3 = 1 , a_4 = 2..... a0=0,a1=1,a2=1,a3=1,a4=2.....以此类推

我们把递推公式转换为线性代数里矩阵相乘形式。

通过题目给出的通向公式,我们可以得到:
f [ i − 2 ] = 0 × f [ i − 2 ] + 1 × f [ i − 1 ] + 0 × f [ i ] f[i-2]=0\times f[i-2]+1\times f[i-1]+0\times f[i] f[i2]=0×f[i2]+1×f[i1]+0×f[i]
f [ i − 1 ] = 0 × f [ i − 2 ] + 0 × f [ i − 1 ] + 1 × f [ i ] f[i-1]=0\times f[i-2]+0\times f[i-1]+1\times f[i] f[i1]=0×f[i2]+0×f[i1]+1×f[i]
f [ i ] = 1 × f [ i − 2 ] + 0 × f [ i − 1 ] + 1 × f [ i ] f[i]=1\times f[i-2]+0\times f[i-1]+1\times f[i] f[i]=1×f[i2]+0×f[i1]+1×f[i]

由此我们容易得出矩阵乘的形式:
[ 0 1 0 0 0 1 1 0 1 ] (!) \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \tag{!} 001100011 (!)

[ 0 1 1 ] (*) \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \tag{*} 011 (*)

令 (!) = M , (*) = ans;

问题就转化为了 M n × a n s = a n M^n\times ans=a_n Mn×ans=an

M n M^{n} Mn可以用快速幂的思想求解


Code

#include <iostream>
#include <cstring>
using namespace std;
typedef long long ll;
const int mod = 1e9 + 7;

struct matrix{
	ll mt[5][5];
}ans , pre , E;

void init(){
	memset(E.mt , 0 , sizeof E.mt);
	
	for (int i = 0 ; i < 3 ; ++ i) E.mt[i][i] = 1;
	
	memset(ans.mt , 0 , sizeof ans.mt);
	
	for (int i = 1 ; i < 3 ; ++ i) ans.mt[i][0] = 1;
	
	memset(pre.mt , 0 , sizeof pre.mt);
	
	pre.mt[0][1] = pre.mt[1][2] = pre.mt[2][0] = pre.mt[2][2] = 1;
}

matrix mul(matrix a , matrix b){
	matrix ans;
	memset(ans.mt , 0 , sizeof ans.mt);
	for (int i = 0 ; i < 3 ; ++ i)
		for (int j = 0 ; j < 3 ; ++ j)
			for (int k = 0 ; k < 3 ; ++ k){
				ans.mt[i][j] += a.mt[i][k] % mod * b.mt[k][j] % mod;
				ans.mt[i][j] %= mod;
			}
	return ans;
}
	
matrix qmi(int b){		
	while(b){
		if (b & 1) E = mul(pre , E);
		pre = mul(pre , pre);
		b >>= 1;
	}
	
	ans= mul(E , ans);
}

int main(){
	int t;
	scanf ("%d" , &t);
	
	while (t -- ){
		int n;
		scanf ("%d" , &n);
		
		if (n <= 3){
			puts("1");
			continue;
		}
		
		init();
		
		qmi(n - 2);
		
		cout << ans.mt[2][0] << endl;
		
	}
	return 0;
}

总结

以上就是今天要讲的内容,本文仅仅简单介绍了矩阵快速幂的使用。
矩阵快速幂不过是快速幂的矩阵形式,如果事先有过快速幂的学习,理解矩阵快速幂就非常快了.

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值