逻辑回归用于讽刺文本检测

这篇博客介绍了如何运用逻辑回归模型来检测讽刺文本,数据来源于Reddit论坛。首先进行数据预处理,然后通过条形图和词云图进行可视化探索,接着训练分类模型并分析模型性能。通过添加新特征,模型的准确度得到提升。
摘要由CSDN通过智能技术生成

逻辑回归用于讽刺文本检测

使用论文 * A Large Self-Annotated Corpus for Sarcasm* 提供的语料数据。该语料数据来源于 Reddit 论坛,挑战通过下面的链接下载并解压数据:

!wget -nc "http://labfile.oss.aliyuncs.com/courses/1283/train-balanced-sarcasm.csv.zip"
!unzip -o "train-balanced-sarcasm.csv.zip"

首先,导入挑战所需的必要模块。

import os
import numpy as np
import
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Deng872347348

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值