使用 Pandas 进行数据探索

本文通过电信运营商的客户离网率数据集,详细介绍了如何使用 Pandas 进行数据探索,包括排序、索引、分组、汇总表等操作,并构建了一个简单的离网率预测模型,展示了 Pandas 在数据预处理和分析中的实用技巧。
摘要由CSDN通过智能技术生成

使用 Pandas 进行数据探索


介绍

本次通过分析电信运营商的客户离网率数据集来熟悉 Pandas 数据探索的常用方法,并构建一个预测客户离网率的简单模型。

知识点
  • 排列
  • 索引
  • 交叉表
  • 透视表
  • 数据探索

Pandas 的主要方法

Pandas 是基于 NumPy 的一种工具,提供了大量数据探索的方法。Pandas 可以使用类似 SQL 的方式对 .csv、.tsv、.xlsx 等格式的数据进行处理分析。

Pandas 主要使用的数据结构是 Series 和 DataFrame 类。下面简要介绍下这两类:

  • Series 是一种类似于一维数组的对象,它由一组数据(各种 NumPy 数据类型)及一组与之相关的数据标签(即索引)组成。
  • DataFrame 是一个二维数据结构,即一张表格,其中每列数据的类型相同。你可以把它看成由 Series 实例构成的字典。

下面开始此次实验,我们将通过分析电信运营商的客户离网率数据集来展示 Pandas 的主要方法。

首先载入必要的库,即 NumPy 和 Pandas。

  • 教学代码ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Deng872347348

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值