Spark的简介:
文章目录
前言:
Spark 最初由美国加州伯克利大学的 AMP 实验室于 2009 年开发,是基于内存计算的大数据并行计算框架,可用于构建大型的、低延迟的数据分析应用程序。
Spark 是什么
Spark 是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。
Spark和Scala:
Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集
Spark and Hadoop
-
在之前的学习中,Hadoop 的 MapReduce 是大家广为熟知的计算框架,那为什么咱们还
-
要学习新的计算框架 Spark 呢,这里就不得不提到 Spark 和 Hadoop 的关系。
首先从时间节点上来看:
-
Hadoop
-
2006 年 1 月,Doug Cutting 加入 Yahoo,领导 Hadoop 的开发
-
2008 年 1 月,Hadoop 成为 Apache 顶级项目
-
2011 年 1.0 正式发布
-
2012 年 3 月稳定版发布
-
2013 年 10 月发布 2.X (Yarn)版本
Spark
-
2009 年,Spark 诞生于伯克利大学的 AMPLab 实验室
-
2010 年,伯克利大学正式开源了 Spark 项目
-
2013 年 6 月,Spark 成为了 Apache 基金会下的项目
-
2014 年 2 月,Spark 以飞快的速度成为了 Apache 的顶级项目
-
2015 年至今,Spark 变得愈发火爆,大量的国内公司开始重点部署或者使用 Spark
-
然后我们再从功能上来看:
Hadoop
-
Hadoop 是由 java 语言编写的,在分布式服务器集群上存储海量数据并运行分布式
分析应用的开源框架
作为 Hadoop 分布式文件系统,HDFS 处于 Hadoop 生态圈的最下层,存储着所有
的 数 据 , 支 持 着 Hadoop 的 所 有 服 务 。 它 的 理 论 基 础 源 于 Google 的
-
TheGoogleFileSystem 这篇论文,它是 GFS 的开源实现。
-
MapReduce 是一种编程模型,Hadoop 根据 Google 的 MapReduce 论文将其实现,
作为 Hadoop 的分布式计算模型,是 Hadoop 的核心。基于这个框架,分布式并行
程序的编写变得异常简单。综合了 HDFS 的分布式存储和 MapReduce 的分布式计
算,Hadoop 在处理海量数据时,性能横向扩展变得非常容易。
-
HBase 是对 Google 的 Bigtable 的开源实现,但又和 Bigtable 存在许多不同之处。
-
HBase 是一个基于 HDFS 的分布式数据库,擅长实时地随机读/写超大规模数据集。
它也是 Hadoop 非常重要的组件。
Spark
-
Spark 是一种由 Scala 语言开发的快速、通用、可扩展的大数据分析引擎
-
Spark Core 中提供了 Spark 最基础与最核心的功能
-
Spark SQL 是 Spark 用来操作结构化数据的组件。通过 Spark SQL,用户可以使用
SQL 或者 Apache Hive 版本的 SQL 方言(HQL)来查询数据。
- Spark Streaming 是 Spark 平台上针对实时数据进行流式计算的组件,提供了丰富的
处理数据流的 API。
-
由上面的信息可以获知,Spark 出现的时间相对较晚,并且主要功能主要是用于数据计算,
所以其实 Spark 一直被认为是 Hadoop 框架的升级版。
Spark or Hadoop
-
Hadoop 的 MR 框架和 Spark 框架都是数据处理框架,那么我们在使用时如何选择呢?
Hadoop MapReduce 由于其设计初衷并不是为了满足循环迭代式数据流处理,因此在多
并行运行的数据可复用场景(如:机器学习、图挖掘算法、交互式数据挖掘算法)中存
在诸多计算效率等问题。所以 Spark 应运而生,Spark 就是在传统的 MapReduce 计算框
架的基础上,利用其计算过程的优化,从而大大加快了数据分析、挖掘的运行和读写速
度,并将计算单元缩小到更适合并行计算和重复使用的 RDD 计算模型。
-
机器学习中 ALS、凸优化梯度下降等。这些都需要基于数据集或者数据集的衍生数据
反复查询反复操作。MR 这种模式不太合适,即使多 MR 串行处理,性能和时间也是一
个问题。数据的共享依赖于磁盘。另外一种是交互式数据挖掘,MR 显然不擅长。而
Spark 所基于的 scala 语言恰恰擅长函数的处理。
-
Spark 是一个分布式数据快速分析项目。它的核心技术是弹性分布式数据集(Resilient
Distributed Datasets),提供了比 MapReduce 丰富的模型,可以快速在内存中对数据集
进行多次迭代,来支持复杂的数据挖掘算法和图形计算算法。
-
Spark 和Hadoop 的根本差异是多个作业之间的数据通信问题 : Spark 多个作业之间数据
通信是基于内存,而 Hadoop 是基于磁盘。
-
Spark Task 的启动时间快。Spark 采用 fork 线程的方式,而 Hadoop 采用创建新的进程
的方式。
- Spark 只有在 shuffle 的时候将数据写入磁盘,而 Hadoop 中多个 MR 作业之间的数据交
互都要依赖于磁盘交互
- Spark 的缓存机制比 HDFS 的缓存机制高效。
经过上面的比较,我们可以看出在绝大多数的数据计算场景中,Spark 确实会比 MapReduce
更有优势。但是 Spark 是基于内存的,所以在实际的生产环境中,由于内存的限制,可能会
由于内存资源不够导致 Job 执行失败,此时,MapReduce 其实是一个更好的选择,所以 Spark
并不能完全替代 MR。
Spark支持的语言:
Spark 支持 Java、Scala 和 Python 等语言,Spark是基于scala语言开发的
Spark的性能优点:
- 更快的速度
内存计算下,Spark 比 Hadoop 快100倍。
- 易用性
Spark 提供了80多个高级运算符。
- 通用性
Spark 提供了大量的库,包括Spark Core、Spark SQL、Spark Streaming、MLlib、GraphX。 开发者可以在同一个应用程序中无缝组合使用这些库。
- 支持多种资源管理器