基于机器学习的天气预测

该博客介绍了基于机器学习的天气预测方法,包括数据预处理(空值填充、异常值处理)、样本比例调整以达到样本均衡,以及使用KNN、决策树和支持向量机三种算法训练模型并进行预测。通过多次预测求平均值,评估模型的准确性。
摘要由CSDN通过智能技术生成

基于机器学习的天气预测


里面用的算法是一些简单的算法。

数据集放到了gitee上面:

https://gitee.com/wavelet-aa/jar.git

开始:

#处理日期
from datetime import datetime, timedelta  
import time  

import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier 
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
from pandas import Series,DataFrame
from sklearn import metrics
import warnings
time: 458 µs

1、数据导入与预处理

In [14]:

#导入数据
weather = pd.read_csv('/home/mw/input/weather2295/weather.csv')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Deng872347348

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值