基于人脸的常见表情识别(1)——深度学习基础知识

这篇博客介绍了深度学习的基础,从单层的感知机到多层感知机(MLP)以及反向传播算法。接着讨论了全连接神经网络的局限性,特别是参数过多的问题,然后引入了卷积神经网络(CNN),阐述了CNN如何通过局部连接和池化解决这些问题,并介绍了卷积、填充、步长和池化等基本概念。
摘要由CSDN通过智能技术生成

基于人脸的常见表情识别(1)——深度学习基础知识

神经网络

1. 感知机

感知机(Perceptron)是 Frank Rosenblatt 在1957年提出的概念,其结构与MP模型类似,一般被视为最简单的人工神经网络,也作为二元线性分类器被广泛使用。通常情况下指单层的人工神经网络,以区别于多层感知机(Multilayer Perceptron)。尽管感知机结构简单,但能够学习并解决较复杂问题。

在这里插入图片描述

假设我们有一个n维输入的单层感知机,x1x1 至 xnxn 为 n 维输入向量的各个分量,w1jw1j 至 wnjwnj为各个输入分量连接到感知机的权量(或称权值),theta 为阈值,f 为激活函数(又称为激励函数或传递函数),o 为标量输出。理想的激活函数通常为阶跃函数或者sigmoid函数。感知机的输出是输入向量x与权重向量w求得内积后,经激活函数f所得到的标量。

单层感知器类似一个逻辑回归模型,可以做线性分类任务࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Deng872347348

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值