基于人脸的常见表情识别(1)——深度学习基础知识
文章目录
神经网络
1. 感知机
感知机(Perceptron)是 Frank Rosenblatt 在1957年提出的概念,其结构与MP模型类似,一般被视为最简单的人工神经网络,也作为二元线性分类器被广泛使用。通常情况下指单层的人工神经网络,以区别于多层感知机(Multilayer Perceptron)。尽管感知机结构简单,但能够学习并解决较复杂问题。
假设我们有一个n维输入的单层感知机,x1x1 至 xnxn 为 n 维输入向量的各个分量,w1jw1j 至 wnjwnj为各个输入分量连接到感知机的权量(或称权值),theta 为阈值,f 为激活函数(又称为激励函数或传递函数),o 为标量输出。理想的激活函数通常为阶跃函数或者sigmoid函数。感知机的输出是输入向量x与权重向量w求得内积后,经激活函数f所得到的标量。
单层感知器类似一个逻辑回归模型,可以做线性分类任务