基于人脸的常见表情识别——模型搭建、训练与测试

本文介绍了使用PyTorch进行常见人脸表情识别的模型搭建过程,包括数据接口准备、模型定义、训练及测试。通过将数据集拆分为训练集和验证集,采用简单的3层卷积神经网络进行训练,并对模型性能进行评估。
摘要由CSDN通过智能技术生成

基于人脸的常见表情识别——模型搭建、训练与测试

模型搭建与训练

得到了数据之后,接下来咱们使用 PyTorch 这个框架来进行模型的训练。整个训练流程包括数据接口准备、模型定义、结果保存与分析。

数据接口准备

PyTorch 图像分类直接利用文件夹作为输入,只需要把不同类的数据放到不同的文件夹中。数据读取的完整代码如下:

data_transforms = {
    'train': transforms.Compose([
        transforms.RandomSizedCrop(48),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])
    ]),
    'val': transforms.Compose([
        transforms.Scale(64),
        transforms.CenterCrop(48),
        transforms.ToTensor(),
        transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])
    ]),
}

data_dir = './train_val_data/'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Deng872347348

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值