基于人脸的常见表情识别——模型搭建、训练与测试
模型搭建与训练
得到了数据之后,接下来咱们使用 PyTorch 这个框架来进行模型的训练。整个训练流程包括数据接口准备、模型定义、结果保存与分析。
数据接口准备
PyTorch 图像分类直接利用文件夹作为输入,只需要把不同类的数据放到不同的文件夹中。数据读取的完整代码如下:
data_transforms = {
'train': transforms.Compose([
transforms.RandomSizedCrop(48),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])
]),
'val': transforms.Compose([
transforms.Scale(64),
transforms.CenterCrop(48),
transforms.ToTensor(),
transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])
]),
}
data_dir = './train_val_data/'