小波变换图像融合matlab实现(基于Haar小波、Daubechies小波、Symlet小波、Biorthogonal小波、Coiflet小波)

图像融合是图像处理和计算机视觉领域中的一项重要技术,它涉及将两个或多个图像结合起来,以产生一个包含所有输入图像信息的新图像。

图像融合要求两张图像尺寸一样,因此在两张不同尺寸的图像融合时首先调整图像尺寸

调整图像尺寸:通过比较两幅图像的尺寸,使用imresize函数将较大的图像缩放到较小图像的尺寸。

[rows1, cols1] = size(gray1);
[rows2, cols2] = size(gray2);
if rows1 > rows2
    gray1 = imresize(gray1, [rows2 cols2]);
elseif rows2 > rows1
    gray2 = imresize(gray2, [rows1 cols1]);
end

在进行多级小波分解时,图像的尺寸在每一级分解后通常会减半。如果原始尺寸不是2的整数次幂,那么在多次分解后,图像的尺寸可能会变得非常不规整,这将影响后续处理和重构的质量。因此一般会将图像尺寸设定为2的整数次幂

使用nextpow2函数找到大于或等于图像尺寸的最小2的幂次,然后使用padarray函数将图像填充到这个尺寸。

% 确保图像尺寸是2的整数次幂
[rows, cols] = size(gray1);
pad_rows = 2^nextpow2(rows) - rows;
pad_cols = 2^nextpow2(cols) - cols;
gray1 = padarray(gray1, [pad_rows pad_cols], 'post');
gray2 = padarray(gray2, [pad_rows pad_cols], 'post');

本文采用五种小波基进行图像融合,效果差别通过肉眼很难观测出来,笔者在前面的图像边缘检测文章中提到过对比方法,即找到一种图像融合效果较好的方法进行处理,得到的结果作为参照,与五种小波基图像融合的效果对比,通过SSIM,RMSE等指标进行对比,这里笔者省略这些步骤,感兴趣可以参考小波变换图像边缘检测(基于haar小波、Daubechies小波、Symlets小波、Coiflets小波、Biorthogonal小波)

下面给出五种小波基图像融合的代码:

% 读取两幅图像
img1 = imread('lena.png');
img2 = imread('Lady.jpg');

% 转换为灰度图像
gray1 = rgb2gray(img1);
gray2 = rgb2gray(img2);

% 调整图像尺寸,使得两张图像具有相同的尺寸
% 这里选择将两张图像都缩放到较小图像的尺寸
[rows1, cols1] = size(gray1);
[rows2, cols2] = size(gray2);
if rows1 > rows2
    gray1 = imresize(gray1, [rows2 cols2]);
elseif rows2 > rows1
    gray2 = imresize(gray2, [rows1 cols1]);
end

% 确保图像尺寸是2的整数次幂
[rows, cols] = size(gray1);
pad_rows = 2^nextpow2(rows) - rows;
pad_cols = 2^nextpow2(cols) - cols;
gray1 = padarray(gray1, [pad_rows pad_cols], 'post');
gray2 = padarray(gray2, [pad_rows pad_cols], 'post');

% 小波分解
wname = {'haar', 'db2', 'sym4', 'bior1.5', 'coif2'};
figure;
for i = 1:length(wname)
    % 使用不同的小波基进行分解
    [cA1, cH1, cV1, cD1] = dwt2(gray1, wname{i});
    [cA2, cH2, cV2, cD2] = dwt2(gray2, wname{i});
    
    % 融合规则:低频系数使用平均值融合,高频系数使用最大值融合
    cA = (cA1 + cA2) / 2;
    cH = max(cH1, cH2);
    cV = max(cV1, cV2);
    cD = max(cD1, cD2);
    
    % 小波重构
    fusedImg = idwt2(cA, cH, cV, cD, wname{i});
    
    % 裁剪填充的部分
    fusedImg = fusedImg(1:rows, 1:cols);
    
    % 显示结果
    subplot(3, 2, i);
    imshow(fusedImg, []);
    title(['Fused with ', wname{i}]);
end

图 像 融 合 是一 种 重要的 增 强 图 像信 息的 技术方 法 , 如 何 对 同 一 目 标 的多 源 遥 感 图 像 数 据 进 行有效 的融 合 , 最 大 限 度 地利 用 多 源 遥 感 数据 中 的 有 用 信 息 , 提 高 系 统的 正 确 识 别 、 判 断 和 决 策 能力 , 这是 遥感 数 据融 合研 究 的重要 内容之 一 。 图 像 融 合 技 术 的 发 展 经 历了 3 个阶段 : ( l ) 简单 的 图 像 融 合方 法 , 如 R G B 假彩色 合 成 、 I H S 彩 色 变 换 、 P CA 主 分 量 变换 法 等 ; ( 2 ) 随 着 塔 式算 子的提 出 , 在融 合领域 也出现 了 一 些较为复杂 的 模 型 ; ( 3 )小波 变换 的多 尺 度分 析 替代塔 式 算 法 。 传 统的图 像 数 据 融 合 方法对 中 、 高 分辨率 的遥 感 图 像 的 数据 融 合 一 般 都 能 取 得 比 较理 想的 效 果 , 但 对 于 低 分 辨率 的 遥 感 图 像 数 据 融 合 效 果 并 不 明 显 。 具 有 “ 数学 显 微 镜 ” 之称 的 小波变换 同时 在 时 域 和 频 域 具有分 辨率 , 对 高 频 分 量 采 用 逐 渐 精 细的 时域或 空 域 步 长 , 可 以 聚 焦 到 分析 对 象 的 任 意细节 , 对 于 剧 烈 变化 的 边 缘 , 比 常 规 的 傅 里 叶 变换 具有更 好 的适 应性 。 由 于 小波变换具有 的 特 点 , 使 它 很快在 图 像 处理 中 得 到 广 泛的应 用 。 与 传 统的 数据 融 合方 法相 比 , 小波融 合 方 法 不 仅 能 够 针 对 输 人图 像 的 不 同 特 征 来 合 理选择小波 基 以 及小 波 变 换 的次 数 , 而 且在融 合 操 作 时 又 可 以 根 据 实 际 需 要 来引 人 双方的细节 信 息 。 从 而 表 现 出 更 强 的针对 性 和 实 用 性 , 融 合效 果更 好 。 另 外 , 从实施 过程 的 灵 活性 方 面 评 价 , IH S 彩色变换 只 能 而且 必须 同 时对 三 个波 段 进行融 合 操 作 , P C A 主 分 量变换 法 的 输 人 图 像 必 须有 三 个或 三 个 以 上 , 而 小 波方 法则 能够完成 对 单 一 波 段 或多 个波 段 的 融 合 运 算 , 对 于 单 个 黑 白 图 像 的 融 合 , 小波 方 法 更 是唯一的选 择 。 本 文 提出 了 一种基 于 小波变 换 的 融 合方 法 , 使 得融 合 图 像 在最 大 限 度 保 留 多波段光 谱 信 息 的 同时 , 提 高 了 清 晰 度 和空 间 分 辨 率 。 并 在 M A T L A B 环 境 下 对 该方 法 进行 了 实 例 分 析 , 从 图 像 清 晰度 、 信 息墒 、 信 噪 比 等 几 个 方 面 对结 果 做 了 深 人的 分 析 与 对 比 , 发现 融 合 后的 图 像 均 值 和 方 差 基 本 保持 不 变 , 图 像 信 噪 比 为 ZO db 左右 , 说 明 融 合 后 的 图 像 基 本保持 了 原 始 图 像 的光 谱 特 性 , 而 信 息 嫡 和 清 晰度 有 明 显 的 提高 。 因 此基 于 小 波 变换 的 M a l l a t 多分辨 率 分 析 可 有 效 地 用 于 低分 辨 率多光 谱 遥 感 图 像 的 数 据 融 合 , 融 合 后 的图 像 在 信 息 含量 、
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋政基

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值