偶然不确定性(aleatoric uncertainty)和认知不确定性(epistemic uncertainty)

这篇博客探讨了预测模型中的不确定性,分为两种类型: aleatoric 和 epistemic 不确定性。aleatoric 不确定性源自数据内在的随机性,无法减少;而 epistemic 不确定性则因知识缺乏引起,可通过收集更多标签数据来降低。主动学习策略关注减少 epistemic 不确定性以提升预测模型性能。
摘要由CSDN通过智能技术生成

1. Here, we have to distinguish between the aleatoric uncertainty that is caused by high Bayesian error, and the epistemic uncertainty, which is caused by a lack of information[22].

We are not able to reduce the aleatoric uncertainty, but we can acquire more labels to reduce the epistemic uncertainty in the currently considered neighborhood.

The prediction uncertainty can be decomposed into epistemic uncertainty and aleatoric uncertainty.

Epistemic uncertainty accounts for the uncertainty in a prediction model caused by a lack of knowledge. This uncertainty can be reduced by collecting more labeled instances. Conventional query selection in active learning is associated with the effective reduction of epistemic uncertainty to improve the prediction model[43].

Aleatoric uncertainty refers to the notion of randomness caused by the stochastic variability inherent in the data. Owing to its inherent nature, this uncertainty is irreducible.

 [ ]Jongmin Han, Seokho Kang. Activelearning with missing values considering imputation uncertainty. KBS.2021

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeniuHe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值