1. Here, we have to distinguish between the aleatoric uncertainty that is caused by high Bayesian error, and the epistemic uncertainty, which is caused by a lack of information[22].
We are not able to reduce the aleatoric uncertainty, but we can acquire more labels to reduce the epistemic uncertainty in the currently considered neighborhood.
The prediction uncertainty can be decomposed into epistemic uncertainty and aleatoric uncertainty.
Epistemic uncertainty accounts for the uncertainty in a prediction model caused by a lack of knowledge. This uncertainty can be reduced by collecting more labeled instances. Conventional query selection in active learning is associated with the effective reduction of epistemic uncertainty to improve the prediction model[43].
Aleatoric uncertainty refers to the notion of randomness caused by the stochastic variability inherent in the data. Owing to its inherent nature, this uncertainty is irreducible.
[ ]Jongmin Han, Seokho Kang. Activelearning with missing values considering imputation uncertainty. KBS.2021