深度学习还不够好,安全的人工智能需要贝叶斯深度学习

本文探讨了深度学习在处理高维数据方面的优势以及其在建模不确定度上的不足,强调了理解不确定度的重要性。文章介绍了认知不确定度和随机不确定度的概念,展示了贝叶斯深度学习在估计不确定度方面的作用,以及如何将其应用于多任务学习,以提高模型的准确性和安全性。同时,提出了实时认知不确定度计算和多模型分布推理等研究挑战。
摘要由CSDN通过智能技术生成

深度学习还不够好,安全的人工智能需要贝叶斯深度学习


Deep Learning Is Not Good Enough, We Need Bayesian Deep Learning for Safe AI


理解模型的不确定度(uncertainty)是机器学习的关键。但能够理解不确定度的传统机器学习方法(如高斯过程,Gaussian processes),无法应用于如图像、视频等高维数据。深度学习(deep learning)能够高效处理该类数据,但其难以对不确定度建模。

本文旨在:
(1)给出不确定度的类型,并建模。
(2)使用不确定度为多任务深度学习模型减重。



图像深度估计示例:(1)图像深度估计贝叶斯神经网络输入样本;(2)深度估计输出;(3)估计的不确定度。

不确定度类型(types of uncertainty)

认知不确定度和随机不确定度(epistemic and aleatoric uncertainty)

认知不确定度(epistemic uncertainty)

认知不确定度(epistemic uncertainty)描述了根据给定训练集得到的模型的不确定度。这种不确定度可通过提供用足够多的数据消除,也被称为模型不确定度(model uncertainty)。

认知不确定度对下列应用至关重要:

(1)安全至上的应用,认知不确定度是理解模型泛化能力的关键;
(2)训练数据稀疏的小数据集。

随机不确定度(aleatoric uncertainty)

随机不确定度(aleatoric uncertainty)描述了关于数据无法解释的信息的不确定度。例如,图像的随机不确定度可以归因于遮挡、缺乏视觉特征或过度曝光区域等。这种不确定度可通过以更高精度观察所有解释性变量(explanatory variables)的能力来消除。

随机不确定度对下列应用至关重要:

(1)海量数据(large data),此时认知不确定度几乎被完全消除;
(2)实时(real-time)应用,取消蒙特卡罗采样(Monte Carlo sampling),用输入数据的确知函数(a deterministic function of the input data)表示随机模型(aleatoric models)。

随机不确定度可细分分为两个类:

(1)数据相关(data-dependant)不确定度或异方差不确定度(heteroscedastic uncertainty):依赖于输入数据且模型输出为预测的随机不确定度。
(2)任务相关(task-dependant)不确定度或同方差不确定度(homoscedastic uncertainty):不依赖于输入数据的的随机不确定度;对于所有输入数据,它为常量;它在不同的任务之间变化;它不是模型输出;它可用来描述依赖任务的不确定度。

示例:图像语义分割中的随机不确定度与认知不确定度,随机不确定度给出了有噪标签的物体边界。第三行给出模型对人行道(footpath)不熟悉时,图像语义分割失败的案例,其对应的认知不确定度变大。

贝叶斯深度学习(Bayesian deep learning)

贝叶斯深度学习(Bayesian deep learning)是深度学习(deep learning)与贝叶斯概率论(Bayesian probability theory)的交叉领域,它给出了深度学习架构的不确定度评估原理(principled uncertainty estimates)。
贝叶斯深度学习利用深度学习的层次表示(hierarchical representation power)对复杂任务进行建模,同时对复杂的多模态后验分布(multi-modal posterior distributions)进行推理。贝叶斯深度学习模型(Bayesian deep learning models)通过模型权重的分布(distributions over model weights),或学习直接映射输出概率(a direct mapping to probabilistic outputs)对不确定度进行估计。

  1. 改变损失函数对异方差随机不确定度(heteroscedastic aleatoric uncertainty)建模

异方差不确定度是输入数据的函数,因此可通过学习输入到输出的确知映射(a deterministic mapping)对其预测。对于回归问题(regression tasks),可定义类似欧式距离( L 2

  • 4
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值