LLM + RAG | AI 幻觉?数据编织提升精准度 —— “企业数据自助查询”

生成式 AI 正掀起一场数据应用的革命,让企业能够以前所未有的创造力和勇气驾驭数据的力量。我们前期探讨了数据编织和检索增强生成 (RAG) 如何为大型语言模型 (LLM) 保驾护航。今天,我们将深入探讨数据编织和 LLM 如何强强联手,打造出按需企业数据查询的利器,赋能企业以复杂应用程序、智能聊天机器人和虚拟助手的形式,轻松实现信息秒级触达。

自然语言转化为SQL,与数据对话

这项技术也被称为“文本到 SQL 生成”,它赋予了用户使用自然语言与数据对话的能力,无需编写复杂的代码,就能轻松洞察数据背后的奥秘。这意味着,即使没有专业技术背景,任何人都可以轻松上手,玩转数据分析。

想要让文本到 SQL 生成真正发挥作用,企业需要打通数据壁垒,实现对企业数据的全面访问,并对数据库模式有深入的了解。这就好比为 LLM 配备了一张清晰的地图和指南针,帮助其生成精准无误的 SQL 查询,精准命中目标数据。

业务用户在进行决策时,往往需要参考多个数据库、数据表等信息。然而,信息量越大,对 LLM 来说也意味着更大的挑战,更容易陷入迷茫和误解。为了让 LLM 发挥最佳性能,我们需要找到提高查询精准度的有效方法,而提示工程和 RAG 就是其中的关键。

“提示工程”就好比训练 LLM 的“战术手册”,通过不断优化输入信息的内容和格式,引导 LLM 生成符合预期的结果。然而,面对复杂的数据库模式和用户意图的模糊性,提示工程也面临着挑战。这时,RAG 就如同 LLM 的“智能助手”,能够动态地提高生成查询的准确性和相关性,帮助 LLM 更精准地理解用户的意图。

数据编织扫除自然语言转化为SQL的障碍

Denodo AI SDK 免费领取icon-default.png?t=O83Ahttps://gitcode.com/Denodo/Denodo-AI-SDK/overviewDenodo Express 免费体验数据编织icon-default.png?t=O83Ahttps://www.denodo.com.cn/zh-hans/denodo-platform/denodo-express

然而企业数据往往分散在多个来源,格式多样,这给数据管理带来了极大的挑战。数据编织技术应运而生,它如同一条无形的纽带,将分散的数据源连接起来,为用户提供统一的数据访问入口,并通过一致的 SQL 接口实现实时数据访问。数据编织的出现,为文本到 SQL 生成技术的应用扫清了障碍。它简化了 LLM 生成查询所需的信息,减少了潜在的混淆和错误,让 LLM 能够更专注于理解用户意图,生成更精准的查询语句。

Denodo 平台作为数据编织领域的佼佼者,通过为特定应用程序划分专属数据视图、提供动态模式访问和部署 REST 服务等功能,进一步增强了数据编织的能力,有效解决了数据安全、访问限制和数据实时性等常见挑战。

实战演练:智能客服系统

假设一家企业正在进行概念验证 (POC),他们的客户代表在回答客户关于订单的问题时遇到了难题。由于相关信息分散在多个系统中,客户代表需要花费大量时间进行查询,效率低下。此外,客户代表只能访问其负责区域的客户信息,如何确保数据安全也是一个亟待解决的问题。

为了解决这些问题,企业希望引入生成式 AI 技术,让客户代表能够使用自然语言查询订单信息,并希望未来能够根据需求添加更多数据源,而无需对系统进行大规模修改。

面对这些挑战,数据编织技术将如何发挥作用呢?构建可信受控数据模式,化解数据混乱

数据编织技术可以根据客户订单和交付信息构建一个专门的数据视图,并通过清晰的关联关系将相关信息连接起来。这种方式不仅简化了 AI 生成 SQL 查询的难度,也确保了数据访问的安全性。更重要的是,这种架构设计具备良好的可扩展性和适应性,能够轻松集成新的数据源,无需对系统进行大刀阔斧的改造:

安全与合规

  • 为数据保驾护航,Denodo 平台强大的安全管控功能,可以根据用户角色和区域设置精细化的数据访问权限,确保客户代表只能访问其权限范围内的客户信息,有效保障数据安全。

性能与可访问性

  • 触手可及,通过数据编织技术,企业可以将历史数据和实时数据整合在一起,为客户代表提供最新、最全面的数据视图。客户代表可以通过单一入口点访问多个数据源的信息,无需在不同系统之间来回切换,极大地提高了工作效率。此外,逻辑数据编织技术还具备强大的查询优化功能,能够确保查询(尤其是生成的查询)以最高效的方式执行,为用户提供极致流畅的数据访问体验。

LLM

  • 得益于数据编织技术的强大功能,我们现在可以动态访问数据模式和底层企业数据存储,并利用 LLM 根据客户代表的自然语言问题生成查询语句。由于我们已经对数据进行了清洗和整合,并构建了专门的数据视图,因此 LLM 能够更精准地理解用户意图,生成更有效的查询语句,从而快速找到答案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值