第十一节 矩阵空间 秩1矩阵 小世界图

矩阵空间

之前我们碰到的所有向量空间都属于三维或者 n n n维的实数空间,表示所有的 n n n维向量,这里介绍的矩阵空间是一种全新的向量空间,矩阵空间把矩阵看成"向量",因为矩阵满足向量的加法及数乘运算,即可以对"向量"进行线性组合得到"向量",也存在 0 0 0向量,即所有元素都为 0 0 0的矩阵,比如所有的 3 × 3 3×3 3×3矩阵空间 M M M,这个矩阵空间有哪些子空间呢?

  • 所有上三角矩阵,如 [ 1 2 3 0 1 2 0 0 3 ] \left[\begin{array}{ccc}1&2&3\\0&1&2\\0&0&3\end{array}\right] 100210323,记为矩阵空间 U U U
  • 所有对称矩阵,如 [ 1 2 3 2 1 2 3 2 3 ] \left[\begin{array}{ccc}1&2&3\\2&1&2\\3&2&3\end{array}\right] 123212323,记为矩阵空间 S S S
  • 所有对角矩阵,即矩阵空间 U U U S S S的交集,如 [ 1 0 0 0 1 0 0 0 3 ] \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&3\end{array}\right] 100010003,记为矩阵空间 D D D

我们可以说对角矩阵比上三角矩阵或对称矩阵要小,因为他属于他们的子集,这里我们很自然的可以与向量空间的维度关联起来,我们来算一下这些子空间的维度。向量空间的维度由向量空间的基确定,基有多少个向量就表示向量空间的维度。我们以矩阵空间 D D D为例,可以猜测 [ 1 0 0 0 0 0 0 0 0 ] , [ 0 0 0 0 1 0 0 0 0 ] , [ 0 0 0 0 0 0 0 0 3 ] \left[\begin{array}{ccc}1&0&0\\0&0&0\\0&0&0\end{array}\right],\left[\begin{array}{ccc}0&0&0\\0&1&0\\0&0&0\end{array}\right],\left[\begin{array}{ccc}0&0&0\\0&0&0\\0&0&3\end{array}\right] 100000000,000010000,000000003是一个基,因为他们之间线性无关,任何对角矩阵都可以由这三个矩阵线性组合得到,因此 d i m D = 3 dimD=3 dimD=3矩阵空间就像把向量空间 R n R^n Rn的概念延申到了 R n ∗ n R^{n*n} Rnn
因此对于矩阵空间 M M M,我们可以知道 d i m M = 9 dimM=9 dimM=9,他的基为 [ 1 0 0 0 0 0 0 0 0 ] , [ 0 1 0 0 0 0 0 0 0 ] , [ 0 0 1 0 0 0 0 0 0 ] . . . [ 0 0 0 0 0 0 0 0 1 ] \left[\begin{array}{ccc}1&0&0\\0&0&0\\0&0&0\end{array}\right],\left[\begin{array}{ccc}0&1&0\\0&0&0\\0&0&0\end{array}\right],\left[\begin{array}{ccc}0&0&1\\0&0&0\\0&0&0\end{array}\right]...\left[\begin{array}{ccc}0&0&0\\0&0&0\\0&0&1\end{array}\right] 100000000,000100000,000000100...000000001,事实上,矩阵空间 M M M几乎与 9 9 9维向量空间相同,只是这里 9 9 9个数字写成了方阵而不是一列。不同的地方是由矩阵的性质决定的。

我们再来看看对称矩阵和对角矩阵的维度,对称矩阵和上三角矩阵都只要确定对角线( 3 3 3)和上三角位置的数( 3 3 3)即可确定整个矩阵,因此 d i m S = 6 , d i m U = 6 dimS=6,dimU=6 dimS=6dimU=6。那么其他子空间如何计算呢?

  • 对角矩阵空间 D = U ∩ S D=U∩S D=US,表示把属于 U U U S S S的所有矩阵都放在一起, d i m D = d i m ( U ∩ S ) = 3 dimD=dim(U∩S)=3 dimD=dim(US)=3
  • 这里我们对 U ∪ S U∪S US不敢兴趣,因为单纯把 U U U S S S的所有矩阵放一起并不能构成矩阵空间(之前章节有证明),那么怎么才能得到一个更大的矩阵空间呢,我么用 U + S U+S U+S表示两个矩阵空间向量的线性组合, U + S = U+S= U+S= U U U中任意元素 + + + S S S中任意元素 = M =M =M d i m ( S + U ) = 9 dim(S+U)=9 dim(S+U)=9

观察这些矩阵可以发现, d i m S + d i m U = d i m ( U ∩ S ) + d i m ( U + S ) = 12 dimS+dimU=dim(U∩S)+dim(U+S) = 12 dimS+dimU=dim(US)+dim(U+S)=12,这个公式对于任意子空间也成立。

微分方程

矩阵空间把矩阵看成向量,其实只要满足线性组合的都可以用向量空间的概念来分析,比如微分方程 d 2 y / d x 2 + y = 0 d^2y/dx^2 +y=0 d2y/dx2+y=0,即 y ′ ′ + y = 0 y''+y=0 y+y=0,方程的解有: y = cos ⁡ x , y = sin ⁡ x , y = e i x , y = e − i x y=\cos{x}, \quad y=\sin{x}, \quad y=e^{ix}, \quad y=e^{-ix} y=cosx,y=sinx,y=eix,y=eix
等等 ( e i x = cos ⁡ x + i sin ⁡ x , e − i x = cos ⁡ x − i sin ⁡ x (e^{ix}=\cos{x}+i\sin{x}, \quad e^{-ix}=\cos{x}-i\sin{x} eix=cosx+isinx,eix=cosxisinx),方程的所有解为 y = c 1 cos ⁡ x + c 2 sin ⁡ x y=c_1 \cos{x} + c_2 \sin{x} y=c1cosx+c2sinx,即为方程的解空间,也可以看成是一个零空间, s i n x sin{x} sinx c o s x cos{x} cosx是方程 A x = 0 Ax=0 Ax=0的特解,也是该零空间的基。该向量空间的维数为 2 2 2(微分方程的阶数,这里是二阶微分方程)。这里生成零空间的东西( s i n , c o s sin,cos sincos)看起来不像向量,而是一个函数,但我们依然可以把其看成是向量,因为我们可以对其进行加法及数乘操作,即可以对其进行线性组合。

秩1矩阵

下面我们回到矩阵最重要的那个数字-矩阵的秩,这里我们要讨论一下秩为 1 1 1的矩阵,因为他们足够简单,主要有以下性质:

  • 对于任意秩1的矩阵,都可以表示为一列乘以一行的形式,即存在列向量 u , v u,v u,v使得: A = u v T A=uv^{\mathrm {T}} A=uvT,如 A = [ 1 4 5 2 8 10 ] = [ 1 2 ] [ 1 4 5 ] A=\left[\begin{array}{ccc}1&4&5\\2&8&10\end{array}\right]=\left[\begin{array}{cc}1\\2\end{array}\right]\left[\begin{array}{cc}1&4&5\end{array}\right] A=[1248510]=[12][145]
  • 秩一矩阵类似“积木”,可以搭建任何矩阵,如对于一个 5 × 17 5 \times 17 5×17秩为 4 4 4的矩阵,只需要 4 4 4个秩 1 1 1矩阵就可以组合出来。
  • m × n m×n m×n矩阵空间 M M M,中所有秩为 r r r的矩阵不构成矩阵空间,通常两个秩 r r r矩阵相加,其结果并不是秩 r r r矩阵

下面我们看另一个问题,在 R 4 \mathbb{R}^4 R4
空间中有向量 v = [ v 1 v 2 v 3 v 4 ] v=\begin{bmatrix}v_1\\v_2\\v_3\\v_4\end{bmatrix} v=v1v2v3v4 ,取 R 4 \mathbb{R}^4 R4 中满足 v 1 + v 2 + v 3 + v 4 = 0 v_1+v_2+v_3+v_4=0 v1+v2+v3+v4=0的所有向量组成一个向量空间 S S S,则 S S S是一个向量子空间,很容易证明任意任意满足条件的向量的线性组合都在这个向量空间内。
从另一个角度看 v 1 + v 2 + v 3 + v 4 = 0 v_1+v_2+v_3+v_4=0 v1+v2+v3+v4=0等价于 [ 1 1 1 1 ] [ v 1 v 2 v 3 v 4 ] = 0 \begin{bmatrix}1&1&1&1\end{bmatrix}\begin{bmatrix}v_1\\v_2\\v_3\\v_4\end{bmatrix}=0 [1111]v1v2v3v4=0,即子空间 S S S是矩阵 A = [ 1 1 1 1 ] A=\begin{bmatrix}1&1&1&1\end{bmatrix} A=[1111]的零空间。 r a n k ( A ) = 1 rank(A)=1 rank(A)=1,则对其零空间有 r a n k ( N ( A ) ) = n − r = 3 = d i m N ( A ) rank(N(A))=n-r=3=dim N(A) rank(N(A))=nr=3=dimN(A),则 S S S的维数是 3 3 3。顺便我们来看看 A A A的四个子空间:

  • 零空间 N ( A ) ∈ R 4 N(A)∈\mathbb{R}^4 N(A)R4 d i m N ( A ) = 3 dimN(A)=3 dimN(A)=3,一组基为 [ − 1 1 0 0 ] , [ − 1 0 1 0 ] , [ − 1 0 0 1 ] \begin{bmatrix}-1\\1\\0\\0\end{bmatrix},\begin{bmatrix}-1\\0\\1\\0\end{bmatrix},\begin{bmatrix}-1\\0\\0\\1\end{bmatrix} 1100,1010,1001
  • 列空间 C ( A ) = R 1 C(A)=\mathbb{R}^1 C(A)=R1 d i m C ( A T ) = 1 dimC(A^{\mathrm {T}})=1 dimC(AT)=1,【 1 1 1】就是列空间的一组基
  • 左零空间 N ( A T ) ∈ R 1 N(A^{\mathrm {T}})∈\mathbb{R}^1 N(AT)R1,因为只有【 0 0 0】是 A T y = 0 A^{\mathrm {T}}y=0 ATy=0的唯一解,所以这是一个零空间, d i m N ( A T ) = 0 dimN(A^{\mathrm {T}})=0 dimN(AT)=0
  • 行空间 C ( A T ) ∈ R 4 C(A^{\mathrm {T}})∈\mathbb{R}^4 C(AT)R4 d i m C ( A T ) = 1 dimC(A^{\mathrm {T}})=1 dimC(AT)=1,基是主元所在行组成的向量组,因此 [ 1 1 1 1 ] \begin{bmatrix}1\\1\\1\\1\end{bmatrix} 1111是一组基

综上, d i m C ( A T ) + d i m N ( A ) = 4 = n , d i m C ( A ) + d i m N ( A T ) = 1 = m dim C(A^{\mathrm {T}})+dim N(A)=4=n, dim C(A)+dim N(A^{\mathrm {T}})=1=m dimC(AT)+dimN(A)=4=n,dimC(A)+dimN(AT)=1=m

小世界图

接下来我们讨论小世界图,以此引出图论与线性代数的关系。那么什么是图?图(graph)由节点(node)与边(edge)组成。
G r a p h = { n o d e s , e d g e s } Graph=\{nodes,edges\} Graph={nodes,edges}
例如对于以下图,其中包含 5 5 5个节点, 6 6 6条边,即可用一个 5 × 6 5×6 5×6矩阵表示所有信息:
在这里插入图片描述

假设每个人是图中的一个节点,如果两个人为朋友关系,则在这两个人的节点间添加一条边,通常来说,从一个节点到另一个节点只需要不超过 6 6 6步(即六条边)即可到达,这就是小世界图的由来。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值