- 博客(26)
- 收藏
- 关注
原创 CFA知识点梳理系列:CFA Level II, Reading 7 Economics of Regulation
这是CFA知识点梳理系列的第七篇文章
2024-12-27 22:22:46
211
原创 利用二次曲线的不变量来快速确认曲线类型
在《如何利用矩阵化简平面上的二次型曲线》这篇文章中,我们介绍了如何利用转轴和移轴矩阵来化简平面上的二次型曲线,从而确定曲线的类型,形状和位置。一个很自然的问题是,我们是否有办法不通过转轴移轴,而是直接通过二次曲线方程的系数,来判断曲线的类型和形状。解决这个问题的思路是,如果我们能找到一些以二次曲线方程系数为变量的函数,这些函数在转轴和移轴下,函数值不变,那么我们就能通过这些函数确定变换前后曲线方程系数之间的关系,进而通过原方程的系数直接来判断曲线的类型和形状。本文将介绍这个方法。
2024-12-26 16:48:28
1707
原创 CFA知识点梳理系列:CFA Level II, Reading 5 Currency Exchange Rates: Understanding Equilibrium Value
这是CFA知识点梳理系列的第五篇文章
2024-12-23 19:59:46
189
原创 质点在不同运动参考系下变换方程以及Coriolis(科里奥利)加速度的严格推导
本文将用高等代数的方法,推导出质点在不同类型的运动参考系下运动轨迹的变换方程。相比于先建立微元,再用几何求近似的方法,这种方法更加严格简洁。
2024-12-20 15:25:25
1346
原创 严格推导质点曲线运动的运动学方程
相当一部分物理学书籍在推导质点在极坐标下的曲线运动学方程时,采用的都是先建立位移的微元Δr⃗Δr,然后几何近似求极限的方法。这种方法虽然能得到正确的结论,但数学上的严格性略有欠缺,且过程繁琐。考虑到使用书籍的主要读者是大学一年级的学生,在微积分和高等代数的知识储备不足的情况下,这确实是一种不得已而为之的办法。然而在具备微积分和代数的基础上,建立质点曲线运动在极坐标下的运动学方程的过程其实是非常严格和简洁的。下面将介绍这种方法。
2024-12-20 00:00:00
1544
原创 利用Newton-Leibniz公式计算特定级数的方法
对于一些级数,常规的计算方法比较难以处理,但通过Newton-Leibniz公式,往往可以将其转化为一个求定积分的问题,进而很容易处理。本文将通过几个例子来介绍这种方法.
2024-12-19 00:15:00
425
原创 从原函数存在定理到微积分基本定理(Newton-Leibniz公式)
微积分基本定理(Newton-Leibniz公式)可以说是微积分中最重要的结论,它用非常简洁优美的形式,揭示了微分和积分的关系,以及利用函数的原函数(不定积分)计算函数黎曼和(定积分)的方法。本文将从证明原函数存在定理出发,证明微积分基本定理。
2024-12-17 12:00:00
1199
原创 CFA知识点梳理系列:CFA Level II, Reading 2 Time-Series Analysis
这是CFA知识点梳理系列的第二篇文章,前面的文章可以参考以下链接:CFA知识点梳理系列:CFA Level II, Reading 1 Multiple Regression
2024-12-14 14:01:35
173
原创 改变有限个点上的函数值对函数可积性的影响
我们知道,若一个有界函数在闭区间上只有有限个不连续点,则该函数在该区间黎曼可积。那么如果在点上改变一个可积函数的函数值,对其可积性和黎曼和会有什么影响?。下面将证明这个命题。
2024-12-14 13:20:53
1134
CFA知识点梳理系列:CFA Level II, Reading 7 Economics of Regulation
2024-12-27
CFA知识点梳理系列:CFA Level II, Reading 6 Economic Growth
2024-12-25
CFA知识点梳理系列:CFA Level II, Reading 5 Currency Exchange Rates: Understanding Equilibrium Value
2024-12-23
CFA知识点梳理系列:CFA Level II, Reading 4 Big Data Projects
2024-12-21
CFA知识点梳理系列:CFA Level II, Reading 3 Machine Learning
2024-12-16
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人