自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Derekqiao1986的博客

在真理之海旁玩耍的孩子

  • 博客(26)
  • 收藏
  • 关注

原创 一元函数微积分的几何应用:二维平面光滑曲线的曲率公式

本文将介绍二维平面光滑曲线的曲率定义以及不同形式的曲率及曲率半径公式的推导。

2025-01-27 17:29:01 1638

原创 一元函数定积分的几何应用:二维平面光滑曲线弧长公式的推导

光滑曲线的弧长公式

2024-12-28 16:19:56 1421

原创 CFA知识点梳理系列:CFA Level II, Reading 7 Economics of Regulation

这是CFA知识点梳理系列的第七篇文章

2024-12-27 22:22:46 211

原创 利用二次曲线的不变量来快速确认曲线类型

在《如何利用矩阵化简平面上的二次型曲线》这篇文章中,我们介绍了如何利用转轴和移轴矩阵来化简平面上的二次型曲线,从而确定曲线的类型,形状和位置。一个很自然的问题是,我们是否有办法不通过转轴移轴,而是直接通过二次曲线方程的系数,来判断曲线的类型和形状。解决这个问题的思路是,如果我们能找到一些以二次曲线方程系数为变量的函数,这些函数在转轴和移轴下,函数值不变,那么我们就能通过这些函数确定变换前后曲线方程系数之间的关系,进而通过原方程的系数直接来判断曲线的类型和形状。本文将介绍这个方法。

2024-12-26 16:48:28 1707

原创 CFA知识点梳理系列:CFA Level II, Reading 6 Economic Growth

这是CFA知识点梳理系列的第六篇文章

2024-12-25 21:30:47 240

原创 n阶Legendre多项式正交性的证明

本文证明了Legendre多项式的正交性质。

2024-12-24 23:13:53 1697

原创 CFA知识点梳理系列:CFA Level II, Reading 5 Currency Exchange Rates: Understanding Equilibrium Value

这是CFA知识点梳理系列的第五篇文章

2024-12-23 19:59:46 189

原创 如何利用矩阵化简平面上的二次型曲线

利用矩阵化简平面上二次型曲线的方法

2024-12-22 20:44:34 1496

原创 CFA知识点梳理系列:CFA Level II, Reading 4 Big Data Projects

这是CFA知识点梳理系列的第四篇文章

2024-12-21 00:20:43 205

原创 质点在不同运动参考系下变换方程以及Coriolis(科里奥利)加速度的严格推导

本文将用高等代数的方法,推导出质点在不同类型的运动参考系下运动轨迹的变换方程。相比于先建立微元,再用几何求近似的方法,这种方法更加严格简洁。

2024-12-20 15:25:25 1346

原创 严格推导质点曲线运动的运动学方程

相当一部分物理学书籍在推导质点在极坐标下的曲线运动学方程时,采用的都是先建立位移的微元Δr⃗Δr,然后几何近似求极限的方法。这种方法虽然能得到正确的结论,但数学上的严格性略有欠缺,且过程繁琐。考虑到使用书籍的主要读者是大学一年级的学生,在微积分和高等代数的知识储备不足的情况下,这确实是一种不得已而为之的办法。然而在具备微积分和代数的基础上,建立质点曲线运动在极坐标下的运动学方程的过程其实是非常严格和简洁的。下面将介绍这种方法。

2024-12-20 00:00:00 1544

原创 利用Newton-Leibniz公式计算特定级数的方法

对于一些级数,常规的计算方法比较难以处理,但通过Newton-Leibniz公式,往往可以将其转化为一个求定积分的问题,进而很容易处理。本文将通过几个例子来介绍这种方法.

2024-12-19 00:15:00 425

原创 n次Legendre(勒让德)多项式在区间(-1, 1)上根的分布及证明

n次勒让德多项式的根分布

2024-12-18 00:29:31 1131

原创 从原函数存在定理到微积分基本定理(Newton-Leibniz公式)

微积分基本定理(Newton-Leibniz公式)可以说是微积分中最重要的结论,它用非常简洁优美的形式,揭示了微分和积分的关系,以及利用函数的原函数(不定积分)计算函数黎曼和(定积分)的方法。本文将从证明原函数存在定理出发,证明微积分基本定理。

2024-12-17 12:00:00 1199

原创 CFA知识点梳理系列:CFA Level II, Reading 3 Machine Learning

这是CFA知识点梳理系列的第三篇文章

2024-12-16 18:23:55 205

原创 多项式Newton公式的行列式表达及证明

多项式Newton公式的行列式表达及证明

2024-12-15 23:41:35 1012

原创 利用代数的方法证明Cauchy(柯西)中值定理

利用代数方法证明柯西中值定理

2024-12-14 17:20:49 850

原创 CFA知识点梳理系列:CFA Level II, Reading 2 Time-Series Analysis

这是CFA知识点梳理系列的第二篇文章,前面的文章可以参考以下链接:CFA知识点梳理系列:CFA Level II, Reading 1 Multiple Regression

2024-12-14 14:01:35 173

原创 改变有限个点上的函数值对函数可积性的影响

我们知道,若一个有界函数在闭区间上只有有限个不连续点,则该函数在该区间黎曼可积。那么如果在点上改变一个可积函数的函数值,对其可积性和黎曼和会有什么影响?。下面将证明这个命题。

2024-12-14 13:20:53 1134

原创 CFA知识点梳理系列:CFA Level II, Reading 1 Multiple Regression

CFA II知识点思维导图

2024-12-13 12:41:45 618

原创 利用代数的方法证明Lagrange(拉格朗日)中值定理

利用代数的方法证明拉格朗日中值定理

2024-12-12 17:00:34 876

原创 复合函数的Riemann可积性

复合函数的Riemann可积性证明

2024-12-11 16:34:25 840

原创 函数的倒函数的Riemann可积性证明

函数的倒函数的Riemann可积性证明

2024-12-10 21:56:59 1086

原创 对于一类函数Riemann可积性的讨论

对一类函数黎曼可积性的讨论

2024-12-10 18:04:46 995

原创 Riemann可积的充要条件的证明

一元函数积分学 黎曼可积的充要条件的证明

2024-12-10 16:17:20 777

原创 一元函数积分学Darboux定理的证明

一元函数积分学Darboux定理的证明

2024-12-10 13:39:39 520 1

CFA知识点梳理系列:CFA Level II, Reading 7 Economics of Regulation

CFA知识点梳理系列:CFA Level II, Reading 7 Economics of Regulation

2024-12-27

CFA知识点梳理系列:CFA Level II, Reading 6 Economic Growth

CFA知识点梳理系列:CFA Level II, Reading 6 Economic Growth

2024-12-25

CFA知识点梳理系列:CFA Level II, Reading 5 Currency Exchange Rates: Understanding Equilibrium Value

CFA知识点梳理系列:CFA Level II, Reading 5 Currency Exchange Rates: Understanding Equilibrium Value

2024-12-23

CFA知识点梳理系列:CFA Level II, Reading 4 Big Data Projects

CFA知识点梳理系列:CFA Level II, Reading 4 Big Data Projects

2024-12-21

CFA知识点梳理系列:CFA Level II, Reading 3 Machine Learning

CFA知识点梳理系列:CFA Level II, Reading 3 Machine Learning

2024-12-16

CFA知识点梳理系列:CFA Level II, Reading 2 Time-Series Analysis

CFA II Reading 2知识点思维导图

2024-12-14

Reading 1 Multiple Regression

CFA二级考试Reading 1 Multiple Regression 知识点梳理思维导图

2024-12-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除