利用代数的方法证明Cauchy(柯西)中值定理

在上一篇文章中,我介绍了如何用代数方法证明Lagrange中值定理:利用代数方法证明Lagrange(拉格朗日)中值定理。事实上Cauchy中值定理也可以用类似的代数方法证明。

Cauchy中值定理:若函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) [ a , b ] [a,b] [a,b]连续,在 ( a , b ) (a,b) (a,b)可导,且对于 ∀ x ∈ ( a , b ) \forall x\in(a,b) x(a,b) g ′ ( x ) ≠ 0 g'(x)\neq 0 g(x)=0,则 ∃ ξ ∈ ( a , b ) \exists \xi \in (a,b) ξ(a,b),使得
f ′ ( ξ ) g ′ ( ξ ) = f ( b ) − f ( a ) g ( b ) − ( a ) \dfrac{f'(\xi)}{g'(\xi)}=\dfrac{f(b)-f(a)}{g(b)-(a)} g(ξ)f(ξ)=g(b)(a)f(b)f(a)

证明

函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) [ a , b ] [a,b] [a,b]连续,则利用它们作为参数方程构造平面上的一段曲线
{ x = g ( t ) , t ∈ [ a , b ] y = f ( t ) , t ∈ [ a , b ] \left\{ \begin{align} x=g(t) , t\in [a,b]\nonumber \\ y=f(t),t\in [a,b] \nonumber \end{align} \right. {x=g(t),t[a,b]y=f(t),t[a,b]

利用曲线上三个点 A ( g ( a ) , f ( a ) ) A(g(a),f(a)) A(g(a),f(a)) B ( g ( b ) , f ( b ) ) B(g(b),f(b)) B(g(b),f(b)) X ( g ( x ) , f ( x ) ) X(g(x),f(x)) X(g(x),f(x))构造两个向量:
A B → = ( g ( b ) − g ( a ) , f ( b ) − f ( a ) ) , A X → = ( g ( x ) − g ( a ) , f ( x ) − f ( a ) ) \overrightarrow{AB}=(g(b)-g(a),f(b)-f(a)),\overrightarrow{AX}=(g(x)-g(a),f(x)-f(a)) AB =(g(b)g(a),f(b)f(a)),AX =(g(x)g(a),f(x)f(a))

则这两个向量张成的平行四边形的面积为:
S ( x ) = ∣ g ( b ) − g ( a ) g ( x ) − g ( a ) f ( b ) − f ( a ) f ( x ) − f ( a ) ∣ S(x)= \left|\begin{array}{} g(b)-g(a)& g(x)-g(a)& \\ & \\ f(b)-f(a)& f(x)-f(a)& \end{array}\right| S(x)= g(b)g(a)f(b)f(a)g(x)g(a)f(x)f(a)

X X X位于 A A A B B B时,平行四边形的面积均为零,因此有 S ( a ) = S ( b ) = 0 S(a)=S(b)=0 S(a)=S(b)=0,此时根据Rolle定理可知: ∃ ξ ∈ ( a , b ) \exists \xi \in (a,b) ξ(a,b),使得 S ′ ( ξ ) = 0 S'(\xi)=0 S(ξ)=0,即

S ′ ( ξ ) = ∣ g ( b ) − g ( a ) g ′ ( ξ ) f ( b ) − f ( a ) f ′ ( ξ ) ∣ = 0 S'(\xi)= \left|\begin{array}{} g(b)-g(a)& g'(\xi)& \\ & \\ f(b)-f(a)& f'(\xi)& \end{array}\right|=0 S(ξ)= g(b)g(a)f(b)f(a)g(ξ)f(ξ) =0

将行列式展开即得到
f ′ ( ξ ) g ′ ( ξ ) = f ( b ) − f ( a ) g ( b ) − ( a ) \dfrac{f'(\xi)}{g'(\xi)}=\dfrac{f(b)-f(a)}{g(b)-(a)} g(ξ)f(ξ)=g(b)(a)f(b)f(a)

证毕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值