在上一篇文章中,我介绍了如何用代数方法证明Lagrange中值定理:利用代数方法证明Lagrange(拉格朗日)中值定理。事实上Cauchy中值定理也可以用类似的代数方法证明。
Cauchy中值定理:若函数
f
(
x
)
f(x)
f(x)与
g
(
x
)
g(x)
g(x)在
[
a
,
b
]
[a,b]
[a,b]连续,在
(
a
,
b
)
(a,b)
(a,b)可导,且对于
∀
x
∈
(
a
,
b
)
\forall x\in(a,b)
∀x∈(a,b),
g
′
(
x
)
≠
0
g'(x)\neq 0
g′(x)=0,则
∃
ξ
∈
(
a
,
b
)
\exists \xi \in (a,b)
∃ξ∈(a,b),使得
f
′
(
ξ
)
g
′
(
ξ
)
=
f
(
b
)
−
f
(
a
)
g
(
b
)
−
(
a
)
\dfrac{f'(\xi)}{g'(\xi)}=\dfrac{f(b)-f(a)}{g(b)-(a)}
g′(ξ)f′(ξ)=g(b)−(a)f(b)−f(a)
证明:
函数
f
(
x
)
f(x)
f(x)与
g
(
x
)
g(x)
g(x)在
[
a
,
b
]
[a,b]
[a,b]连续,则利用它们作为参数方程构造平面上的一段曲线
{
x
=
g
(
t
)
,
t
∈
[
a
,
b
]
y
=
f
(
t
)
,
t
∈
[
a
,
b
]
\left\{ \begin{align} x=g(t) , t\in [a,b]\nonumber \\ y=f(t),t\in [a,b] \nonumber \end{align} \right.
{x=g(t),t∈[a,b]y=f(t),t∈[a,b]
利用曲线上三个点
A
(
g
(
a
)
,
f
(
a
)
)
A(g(a),f(a))
A(g(a),f(a)),
B
(
g
(
b
)
,
f
(
b
)
)
B(g(b),f(b))
B(g(b),f(b)),
X
(
g
(
x
)
,
f
(
x
)
)
X(g(x),f(x))
X(g(x),f(x))构造两个向量:
A
B
→
=
(
g
(
b
)
−
g
(
a
)
,
f
(
b
)
−
f
(
a
)
)
,
A
X
→
=
(
g
(
x
)
−
g
(
a
)
,
f
(
x
)
−
f
(
a
)
)
\overrightarrow{AB}=(g(b)-g(a),f(b)-f(a)),\overrightarrow{AX}=(g(x)-g(a),f(x)-f(a))
AB=(g(b)−g(a),f(b)−f(a)),AX=(g(x)−g(a),f(x)−f(a))
则这两个向量张成的平行四边形的面积为:
S
(
x
)
=
∣
g
(
b
)
−
g
(
a
)
g
(
x
)
−
g
(
a
)
f
(
b
)
−
f
(
a
)
f
(
x
)
−
f
(
a
)
∣
S(x)= \left|\begin{array}{} g(b)-g(a)& g(x)-g(a)& \\ & \\ f(b)-f(a)& f(x)-f(a)& \end{array}\right|
S(x)=
g(b)−g(a)f(b)−f(a)g(x)−g(a)f(x)−f(a)
当 X X X位于 A A A或 B B B时,平行四边形的面积均为零,因此有 S ( a ) = S ( b ) = 0 S(a)=S(b)=0 S(a)=S(b)=0,此时根据Rolle定理可知: ∃ ξ ∈ ( a , b ) \exists \xi \in (a,b) ∃ξ∈(a,b),使得 S ′ ( ξ ) = 0 S'(\xi)=0 S′(ξ)=0,即
S ′ ( ξ ) = ∣ g ( b ) − g ( a ) g ′ ( ξ ) f ( b ) − f ( a ) f ′ ( ξ ) ∣ = 0 S'(\xi)= \left|\begin{array}{} g(b)-g(a)& g'(\xi)& \\ & \\ f(b)-f(a)& f'(\xi)& \end{array}\right|=0 S′(ξ)= g(b)−g(a)f(b)−f(a)g′(ξ)f′(ξ) =0
将行列式展开即得到
f
′
(
ξ
)
g
′
(
ξ
)
=
f
(
b
)
−
f
(
a
)
g
(
b
)
−
(
a
)
\dfrac{f'(\xi)}{g'(\xi)}=\dfrac{f(b)-f(a)}{g(b)-(a)}
g′(ξ)f′(ξ)=g(b)−(a)f(b)−f(a)
证毕。