对于一类函数Riemann可积性的讨论

前言

对于函数而言,当函数在一个小区间上的振幅的最大值 m a x ( ω i ) = M i − m i max(\omega_{i})=M_{i}-m_{i} max(ωi)=Mimi随着划分区间最大值 λ = m a x ( Δ x i ) → 0 \lambda=max(\Delta x_{i}) \rightarrow0 λ=max(Δxi)0而逐渐趋于零,那么它显然是黎曼可积的。然而很多函数并不具备这样的性质,它们的最大振幅在区间趋于零时并不趋于零。但如果这些振幅不趋于零的小区间之和可以任意小,这个函数仍然是黎曼可积的。下面会讨论几个具备类似性质的函数,并证明其可积性。

两个典型函数的例子

函数1:

f ( x ) = { 1 x − [ 1 x ] , 0 < x ≤ 1 0 , x = 0 f(x)=\left\{ {\begin{aligned} &\frac{1}{x}-\left[\frac{1}{x}\right], &0<x\leq1 \\ &0, &x=0 \end{aligned}} \right. f(x)= x1[x1],0,0<x1x=0

可以验证,函数在点 x = 1 k , k ∈ N + x=\frac{1}{k},k\in N^{+} x=k1,kN+的左右极限不相等但有定义,因此,这些点是函数的第一类间断点,即跳跃点。现取这些跳跃点构造区间 [ 0 , 1 ] [0,1] [0,1]上的一个划分 P ′ : 0 < p 1 ′ < . . . < p k ′ < 1 P^{'}:0<p_1^{'}<...<p_k^{'}<1 P:0<p1<...<pk<1,其中 p 1 ′ = 1 2 , p 2 ′ = 1 3 , . . . , p j ′ = 1 j + 1 , . . . , p k ′ = 1 k + 1 p_1^{'}=\frac{1}{2},p_2^{'}=\frac{1}{3},...,p_j^{'}=\frac{1}{j+1},...,p_{k}^{'}=\frac{1}{k+1} p1=21,p2=31,...,pj=j+11,...,pk=k+11.

对于任意给定的 ε > 0 \varepsilon>0 ε>0,取 δ = m i n 1 ≤ j ≤ k { p 1 ′ 2 , 1 − p k ′ 2 , p j ′ − p j − 1 ′ 3 , ε 4 k ( M − m ) } > 0 \delta=\mathop{min}\limits_{1\leq j \leq k}\{ \frac{p_1^{'}}{2},\frac{1-p_k^{'}}{2},\frac{p_j^{'}-p_{j-1}^{'}}{3}, \frac{\varepsilon}{4k(M-m)} \}>0 δ=1jkmin{2p1,21pk,3pjpj1,4k(Mm)ε}>0,同时取 O { p j ′ , δ } \Omicron\{p_j^{'},\delta\} O{pj,δ}的两个端点 p j ′ − δ , p j ′ + δ p_j^{'}-\delta,p_j^{'}+\delta pjδ,pj+δ作为分点,构成一个新的划分 P : 0 < p 1 ′ − δ < p 1 ′ + δ < . . . < p j ′ − δ < p j ′ + δ < . . . < p k ′ − δ < p k ′ + δ < 1 P:0<p_1^{'}-\delta<p_1^{'}+\delta<...<p_j^{'}-\delta<p_j^{'}+\delta<...<p_k^{'}-\delta<p_k^{'}+\delta<1 P:0<p1δ<p1+δ<...<pjδ<pj+δ<...<pkδ<pk+δ<1
划分 P P P构成了 2 k + 1 2k+1 2k+1个子区间,其中 f ( x ) f(x) f(x) k k k个子区间 D ( j ) = [ p j ′ − δ , p j ′ + δ ] D^{(j)}=[p_j^{'}-\delta, p_j^{'}+\delta] D(j)=[pjδ,pj+δ]上有跳跃点;在 k + 1 k+1 k+1个子区间 E ( 2 ≤ j ≤ k ) = [ p j − 1 ′ + δ , p j ′ − δ ] , E ( 1 ) = [ 0 , p 1 ′ − δ ] , E ( k + 1 ) = [ p k ′ + δ , 1 ] E^{(2\leq j\leq k)}=[p_{j-1}^{'}+\delta, p_j^{'}-\delta],E^{(1)}=[0,p_1^{'}-\delta],E^{(k+1)}=[p_k^{'}+\delta,1] E(2jk)=[pj1+δ,pjδ]E(1)=[0,p1δ],E(k+1)=[pk+δ,1]上连续,进而黎曼可积。

先考察子区间 D ( j ) D^{(j)} D(j)。记 f ( x ) f(x) f(x)在子区间 D ( j ) D^{(j)} D(j)上的振幅为 ω j \omega_{j} ωj,则有
∑ j = 1 k ω j [ ( p j ′ − δ ) − ( p j ′ + δ ) ] ≤ 2 k ( M − m ) δ ≤ ε 2 \sum_{j=1}^k \omega_{j}[(p_j^{'}-\delta)-(p_j^{'}+\delta)]\leq 2k(M-m)\delta\leq\frac{\varepsilon}{2} j=1kωj[(pjδ)(pj+δ)]2k(Mm)δ2ε

再考察子区间 E ( j ) E^{(j)} E(j), 因为 f ( x ) f(x) f(x)在这些子区间上都黎曼可积,根据定义,在每个子区间 E ( j ) E^{(j)} E(j)上必然存在分点
p j − 1 ′ + δ = x 0 ( j ) < x 1 ( j ) < . . . < x t j ( j ) = p j ′ − δ p_{j-1}^{'}+\delta=x_0^{(j)}<x_1^{(j)}<...<x_{tj}^{(j)}=p_{j}^{'}-\delta pj1+δ=x0(j)<x1(j)<...<xtj(j)=pjδ,使得
∑ i = 1 t j w i ( j ) Δ x i ( j ) < ε 2 ( k + 1 ) \sum_{i=1}^{tj}w_{i}^{(j)}\Delta x_{i}^{(j)}<\frac{\varepsilon}{2(k+1)} i=1tjwi(j)Δxi(j)<2(k+1)ε

现在将 P P P P ′ P^{'} P的划分点合并,将其看做 [ 0 , 1 ] [0,1] [0,1]上的一个划分,记其每个区间的振幅为 ω i \omega_{i} ωi,则有
∑ i = 1 n = [ k + ( k + 1 ) t j ] ω i Δ x i = ∑ j = 1 k + 1 ∑ i = 1 t j w i ( j ) Δ x i ( j ) + ∑ j = 1 k ω j [ ( p j ′ − δ ) − ( p j ′ + δ ) ] < ε 2 ( k + 1 ) ⋅ ( k + 1 ) + ε 2 = ε \begin{aligned} \sum_{i=1}^{n=[k+(k+1)tj]} \omega_{i}\Delta x_{i}&=\sum_{j=1}^{k+1}\sum_{i=1}^{tj}w_{i}^{(j)}\Delta x_{i}^{(j)}+\sum_{j=1}^k \omega_{j}[(p_j^{'}-\delta)-(p_j^{'}+\delta)]\\ &<\frac{\varepsilon}{2(k+1)}\cdot (k+1)+\frac{\varepsilon}{2}=\varepsilon \end{aligned} i=1n=[k+(k+1)tj]ωiΔxi=j=1k+1i=1tjwi(j)Δxi(j)+j=1kωj[(pjδ)(pj+δ)]<2(k+1)ε(k+1)+2ε=ε
综上已经证明了对于任意给定的 ε > 0 \varepsilon>0 ε>0,都存在一种划分,使的相应的振幅满足
∑ i = 1 n w i Δ x i < ε \sum_{i=1}^n w_{i} \Delta x_{i}<\varepsilon i=1nwiΔxi<ε
因此 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]黎曼可积。

函数2

f ( x ) = { s g n ( s i n π x ) , 0 < x ≤ 1 0 , x = 0 f(x)=\left\{ {\begin{aligned} &sgn(sin\frac{\pi}{x}), &0<x\leq1 \\ &0, &x=0 \end{aligned}} \right. f(x)= sgn(sinxπ),0,0<x1x=0

易得点 x = 1 k , k ∈ N + x=\frac{1}{k},k\in N^{+} x=k1,kN+同样是函数在 [ 0 , 1 ] [0,1] [0,1]的跳跃点。用同样的方式可以证明该函数在 [ 0 , 1 ] [0,1] [0,1]黎曼可积。

内容概要:该论文深入研究了液压挖掘机动臂下降势能回收技术,旨在解决传统液压挖掘机能耗高的问题。提出了一种新型闭式回路势能回收系统,利用模糊PI自整定控制算法控制永磁无刷直流电动机,实现了变转速容调速控制,消除了节流和溢流损失。通过建立数学模型和仿真模型,分析了不同负载下的系统能,并开发了试验平台验证系统的高效和节能效果。研究还涵盖了执行机构能量分布分析、系统元件参数匹配及电机控制能优化,为液压挖掘机节能技术提供了理论和实践依据。此外,通过实验验证,该系统相比传统方案可降低28%的能耗,控制系统响应时间缩短40%,为工程机械的绿色化、智能化发展提供了关键技术支撑。 适合人群:从事工程机械设计、制造及维护的工程师和技术人员,以及对液压系统节能技术感兴趣的科研人员。 使用场景及目标:①理解液压挖掘机闭式回路动臂势能回收系统的原理和优势;②掌握模糊PI自整定控制算法的具体实现;③学习如何通过理论建模、仿真和实验验证来评估和优化液压系统的能。 其他说明:此研究不仅提供了详细的理论分析和数学建模,还给出了具体的仿真代码和实验数据,便于读者在实际工作中进行参考和应用。研究结果表明,该系统不仅能显著提高能源利用效率,还能延长设备使用寿命,降低维护成本,具有重要的工程应用价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值