前言
对于函数而言,当函数在一个小区间上的振幅的最大值 m a x ( ω i ) = M i − m i max(\omega_{i})=M_{i}-m_{i} max(ωi)=Mi−mi随着划分区间最大值 λ = m a x ( Δ x i ) → 0 \lambda=max(\Delta x_{i}) \rightarrow0 λ=max(Δxi)→0而逐渐趋于零,那么它显然是黎曼可积的。然而很多函数并不具备这样的性质,它们的最大振幅在区间趋于零时并不趋于零。但如果这些振幅不趋于零的小区间之和可以任意小,这个函数仍然是黎曼可积的。下面会讨论几个具备类似性质的函数,并证明其可积性。
两个典型函数的例子
函数1:
f ( x ) = { 1 x − [ 1 x ] , 0 < x ≤ 1 0 , x = 0 f(x)=\left\{ {\begin{aligned} &\frac{1}{x}-\left[\frac{1}{x}\right], &0<x\leq1 \\ &0, &x=0 \end{aligned}} \right. f(x)=⎩ ⎨ ⎧x1−[x1],0,0<x≤1x=0
可以验证,函数在点 x = 1 k , k ∈ N + x=\frac{1}{k},k\in N^{+} x=k1,k∈N+的左右极限不相等但有定义,因此,这些点是函数的第一类间断点,即跳跃点。现取这些跳跃点构造区间 [ 0 , 1 ] [0,1] [0,1]上的一个划分 P ′ : 0 < p 1 ′ < . . . < p k ′ < 1 P^{'}:0<p_1^{'}<...<p_k^{'}<1 P′:0<p1′<...<pk′<1,其中 p 1 ′ = 1 2 , p 2 ′ = 1 3 , . . . , p j ′ = 1 j + 1 , . . . , p k ′ = 1 k + 1 p_1^{'}=\frac{1}{2},p_2^{'}=\frac{1}{3},...,p_j^{'}=\frac{1}{j+1},...,p_{k}^{'}=\frac{1}{k+1} p1′=21,p2′=31,...,pj′=j+11,...,pk′=k+11.
对于任意给定的
ε
>
0
\varepsilon>0
ε>0,取
δ
=
m
i
n
1
≤
j
≤
k
{
p
1
′
2
,
1
−
p
k
′
2
,
p
j
′
−
p
j
−
1
′
3
,
ε
4
k
(
M
−
m
)
}
>
0
\delta=\mathop{min}\limits_{1\leq j \leq k}\{ \frac{p_1^{'}}{2},\frac{1-p_k^{'}}{2},\frac{p_j^{'}-p_{j-1}^{'}}{3}, \frac{\varepsilon}{4k(M-m)} \}>0
δ=1≤j≤kmin{2p1′,21−pk′,3pj′−pj−1′,4k(M−m)ε}>0,同时取
O
{
p
j
′
,
δ
}
\Omicron\{p_j^{'},\delta\}
O{pj′,δ}的两个端点
p
j
′
−
δ
,
p
j
′
+
δ
p_j^{'}-\delta,p_j^{'}+\delta
pj′−δ,pj′+δ作为分点,构成一个新的划分
P
:
0
<
p
1
′
−
δ
<
p
1
′
+
δ
<
.
.
.
<
p
j
′
−
δ
<
p
j
′
+
δ
<
.
.
.
<
p
k
′
−
δ
<
p
k
′
+
δ
<
1
P:0<p_1^{'}-\delta<p_1^{'}+\delta<...<p_j^{'}-\delta<p_j^{'}+\delta<...<p_k^{'}-\delta<p_k^{'}+\delta<1
P:0<p1′−δ<p1′+δ<...<pj′−δ<pj′+δ<...<pk′−δ<pk′+δ<1
划分
P
P
P构成了
2
k
+
1
2k+1
2k+1个子区间,其中
f
(
x
)
f(x)
f(x)在
k
k
k个子区间
D
(
j
)
=
[
p
j
′
−
δ
,
p
j
′
+
δ
]
D^{(j)}=[p_j^{'}-\delta, p_j^{'}+\delta]
D(j)=[pj′−δ,pj′+δ]上有跳跃点;在
k
+
1
k+1
k+1个子区间
E
(
2
≤
j
≤
k
)
=
[
p
j
−
1
′
+
δ
,
p
j
′
−
δ
]
,
E
(
1
)
=
[
0
,
p
1
′
−
δ
]
,
E
(
k
+
1
)
=
[
p
k
′
+
δ
,
1
]
E^{(2\leq j\leq k)}=[p_{j-1}^{'}+\delta, p_j^{'}-\delta],E^{(1)}=[0,p_1^{'}-\delta],E^{(k+1)}=[p_k^{'}+\delta,1]
E(2≤j≤k)=[pj−1′+δ,pj′−δ],E(1)=[0,p1′−δ],E(k+1)=[pk′+δ,1]上连续,进而黎曼可积。
先考察子区间
D
(
j
)
D^{(j)}
D(j)。记
f
(
x
)
f(x)
f(x)在子区间
D
(
j
)
D^{(j)}
D(j)上的振幅为
ω
j
\omega_{j}
ωj,则有
∑
j
=
1
k
ω
j
[
(
p
j
′
−
δ
)
−
(
p
j
′
+
δ
)
]
≤
2
k
(
M
−
m
)
δ
≤
ε
2
\sum_{j=1}^k \omega_{j}[(p_j^{'}-\delta)-(p_j^{'}+\delta)]\leq 2k(M-m)\delta\leq\frac{\varepsilon}{2}
j=1∑kωj[(pj′−δ)−(pj′+δ)]≤2k(M−m)δ≤2ε
再考察子区间
E
(
j
)
E^{(j)}
E(j), 因为
f
(
x
)
f(x)
f(x)在这些子区间上都黎曼可积,根据定义,在每个子区间
E
(
j
)
E^{(j)}
E(j)上必然存在分点
p
j
−
1
′
+
δ
=
x
0
(
j
)
<
x
1
(
j
)
<
.
.
.
<
x
t
j
(
j
)
=
p
j
′
−
δ
p_{j-1}^{'}+\delta=x_0^{(j)}<x_1^{(j)}<...<x_{tj}^{(j)}=p_{j}^{'}-\delta
pj−1′+δ=x0(j)<x1(j)<...<xtj(j)=pj′−δ,使得
∑
i
=
1
t
j
w
i
(
j
)
Δ
x
i
(
j
)
<
ε
2
(
k
+
1
)
\sum_{i=1}^{tj}w_{i}^{(j)}\Delta x_{i}^{(j)}<\frac{\varepsilon}{2(k+1)}
i=1∑tjwi(j)Δxi(j)<2(k+1)ε
现在将
P
P
P和
P
′
P^{'}
P′的划分点合并,将其看做
[
0
,
1
]
[0,1]
[0,1]上的一个划分,记其每个区间的振幅为
ω
i
\omega_{i}
ωi,则有
∑
i
=
1
n
=
[
k
+
(
k
+
1
)
t
j
]
ω
i
Δ
x
i
=
∑
j
=
1
k
+
1
∑
i
=
1
t
j
w
i
(
j
)
Δ
x
i
(
j
)
+
∑
j
=
1
k
ω
j
[
(
p
j
′
−
δ
)
−
(
p
j
′
+
δ
)
]
<
ε
2
(
k
+
1
)
⋅
(
k
+
1
)
+
ε
2
=
ε
\begin{aligned} \sum_{i=1}^{n=[k+(k+1)tj]} \omega_{i}\Delta x_{i}&=\sum_{j=1}^{k+1}\sum_{i=1}^{tj}w_{i}^{(j)}\Delta x_{i}^{(j)}+\sum_{j=1}^k \omega_{j}[(p_j^{'}-\delta)-(p_j^{'}+\delta)]\\ &<\frac{\varepsilon}{2(k+1)}\cdot (k+1)+\frac{\varepsilon}{2}=\varepsilon \end{aligned}
i=1∑n=[k+(k+1)tj]ωiΔxi=j=1∑k+1i=1∑tjwi(j)Δxi(j)+j=1∑kωj[(pj′−δ)−(pj′+δ)]<2(k+1)ε⋅(k+1)+2ε=ε
综上已经证明了对于任意给定的
ε
>
0
\varepsilon>0
ε>0,都存在一种划分,使的相应的振幅满足
∑
i
=
1
n
w
i
Δ
x
i
<
ε
\sum_{i=1}^n w_{i} \Delta x_{i}<\varepsilon
i=1∑nwiΔxi<ε
因此
f
(
x
)
f(x)
f(x)在
[
0
,
1
]
[0,1]
[0,1]黎曼可积。
函数2
f ( x ) = { s g n ( s i n π x ) , 0 < x ≤ 1 0 , x = 0 f(x)=\left\{ {\begin{aligned} &sgn(sin\frac{\pi}{x}), &0<x\leq1 \\ &0, &x=0 \end{aligned}} \right. f(x)=⎩ ⎨ ⎧sgn(sinxπ),0,0<x≤1x=0
易得点 x = 1 k , k ∈ N + x=\frac{1}{k},k\in N^{+} x=k1,k∈N+同样是函数在 [ 0 , 1 ] [0,1] [0,1]的跳跃点。用同样的方式可以证明该函数在 [ 0 , 1 ] [0,1] [0,1]黎曼可积。