函数的倒函数的Riemann可积性证明

若函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上黎曼可积,那么 1 f ( x ) \dfrac{1}{f(x)} f(x)1在满足什么条件下在 [ a , b ] [a,b] [a,b]上也可积?下面给出相关命题及证明。

命题

若函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上黎曼可积,且在 [ a , b ] [a,b] [a,b]上满足 ∣ f ( x ) ∣ ≥ m > 0 |f(x)|\geq m>0 f(x)m>0 m m m是一个常数,则 1 f ( x ) \dfrac{1}{f(x)} f(x)1 [ a , b ] [a,b] [a,b]上也黎曼可积。

证明

任意构造一个在 [ a , b ] [a,b] [a,b]上的划分 P : a = x 0 < x 1 < . . . < x n = b P: a=x_{0}<x_{1}<...<x_{n}=b P:a=x0<x1<...<xn=b,考察其中任意一个区间 [ x i − 1 , x i ] [x_{i-1},x_{i}] [xi1,xi]。记函数 f ( x ) f(x) f(x)在区间 [ x i − 1 , x i ] [x_{i-1},x_{i}] [xi1,xi]的上确界为 M i M_{i} Mi,下确界为 m i m_{i} mi,设 x i − 1 ≤ x ′ ≠ x ′ ′ ≤ x i x_{i-1}\leq x^{'}\neq x^{''}\leq x_{i} xi1x=x′′xi,则 f ( x ) f(x) f(x) [ x i − 1 , x i ] [x_{i-1},x_{i}] [xi1,xi]的振幅可以表示为
ω i ( f ) = M i − m i = m a x { f ( x ′ ) − f ( x ′ ′ ) } \omega_{i}(f)=M_i-m_i=max\{f(x^{'})-f(x^{''})\} ωi(f)=Mimi=max{f(x)f(x′′)}

现在考察函数的倒数 1 f ( x ) \dfrac{1}{f(x)} f(x)1。记函数 1 f ( x ) \dfrac{1}{f(x)} f(x)1在区间 [ x i − 1 , x i ] [x_{i-1},x_{i}] [xi1,xi]的上确界为 M i ′ M_{i}^{'} Mi,下确界为 m i ′ m_{i}^{'} mi,同理, 1 f ( x ) \dfrac{1}{f(x)} f(x)1 [ x i − 1 , x i ] [x_{i-1},x_{i}] [xi1,xi]的振幅可表示为
ω i ( 1 f ) = M i ′ − m i ′ = m a x { 1 f ( x ′ ) − 1 f ( x ′ ′ ) } \omega_{i}(\frac{1}{f})=M_i^{'}-m_i^{'}=max\{\frac{1}{f(x^{'})}-\frac{1}{f(x^{''})}\} ωi(f1)=Mimi=max{f(x)1f(x′′)1}
由于
1 f ( x ′ ) − 1 f ( x ′ ′ ) = f ( x ′ ′ ) − f ( x ′ ) f ( x ′ ) f ( x ′ ′ ) ≤ f ( x ′ ′ ) − f ( x ′ ) m 2 \frac{1}{f(x^{'})}-\frac{1}{f(x^{''})}=\frac{f(x^{''})-f(x^{'})}{f(x^{'})f(x^{''})}\leq \frac{f(x^{''})-f(x^{'})}{m^2} f(x)1f(x′′)1=f(x)f(x′′)f(x′′)f(x)m2f(x′′)f(x)
因此有
ω i ( 1 f ) ≤ 1 m 2 m a x { f ( x ′ ) − f ( x ′ ′ ) } = 1 m 2 ω i ( f ) \omega_{i}(\frac{1}{f})\leq \frac{1}{m^2} max\{f(x^{'})-f(x^{''})\}=\frac{1}{m^2}\omega_{i}(f) ωi(f1)m21max{f(x)f(x′′)}=m21ωi(f)

由于函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上黎曼可积,因此对于任意给定的 ε > 0 , ∃ δ > 0 , ∀ λ = m a x 1 ≤ i ≤ n ( Δ x i ) < δ \varepsilon >0, \exists \delta>0, \forall \lambda=\mathop{max}\limits_{1\leq i \leq n}(\Delta x_{i})<\delta ε>0,δ>0,λ=1inmax(Δxi)<δ,使得 ∑ i = 1 n ω i ( f ) Δ x i < m 2 ε \sum_{i=1}^n\omega_{i}(f)\Delta x_{i}<m^2\varepsilon i=1nωi(f)Δxi<m2ε。从而有
∑ i = 1 n ω i ( 1 f ) Δ x i ≤ 1 m 2 ∑ i = 1 n ω i ( f ) Δ x i < ε \sum_{i=1}^n\omega_{i}(\frac{1}{f})\Delta x_{i}\leq \frac{1}{m^2}\sum_{i=1}^n\omega_{i}(f)\Delta x_{i}<\varepsilon i=1nωi(f1)Δxim21i=1nωi(f)Δxi<ε
此即 1 f ( x ) \dfrac{1}{f(x)} f(x)1 [ a , b ] [a,b] [a,b]上也黎曼可积。证毕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值