若函数 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上黎曼可积,那么 1 f ( x ) \dfrac{1}{f(x)} f(x)1在满足什么条件下在 [ a , b ] [a,b] [a,b]上也可积?下面给出相关命题及证明。
命题
若函数 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上黎曼可积,且在 [ a , b ] [a,b] [a,b]上满足 ∣ f ( x ) ∣ ≥ m > 0 |f(x)|\geq m>0 ∣f(x)∣≥m>0, m m m是一个常数,则 1 f ( x ) \dfrac{1}{f(x)} f(x)1在 [ a , b ] [a,b] [a,b]上也黎曼可积。
证明
任意构造一个在
[
a
,
b
]
[a,b]
[a,b]上的划分
P
:
a
=
x
0
<
x
1
<
.
.
.
<
x
n
=
b
P: a=x_{0}<x_{1}<...<x_{n}=b
P:a=x0<x1<...<xn=b,考察其中任意一个区间
[
x
i
−
1
,
x
i
]
[x_{i-1},x_{i}]
[xi−1,xi]。记函数
f
(
x
)
f(x)
f(x)在区间
[
x
i
−
1
,
x
i
]
[x_{i-1},x_{i}]
[xi−1,xi]的上确界为
M
i
M_{i}
Mi,下确界为
m
i
m_{i}
mi,设
x
i
−
1
≤
x
′
≠
x
′
′
≤
x
i
x_{i-1}\leq x^{'}\neq x^{''}\leq x_{i}
xi−1≤x′=x′′≤xi,则
f
(
x
)
f(x)
f(x)在
[
x
i
−
1
,
x
i
]
[x_{i-1},x_{i}]
[xi−1,xi]的振幅可以表示为
ω
i
(
f
)
=
M
i
−
m
i
=
m
a
x
{
f
(
x
′
)
−
f
(
x
′
′
)
}
\omega_{i}(f)=M_i-m_i=max\{f(x^{'})-f(x^{''})\}
ωi(f)=Mi−mi=max{f(x′)−f(x′′)}
现在考察函数的倒数
1
f
(
x
)
\dfrac{1}{f(x)}
f(x)1。记函数
1
f
(
x
)
\dfrac{1}{f(x)}
f(x)1在区间
[
x
i
−
1
,
x
i
]
[x_{i-1},x_{i}]
[xi−1,xi]的上确界为
M
i
′
M_{i}^{'}
Mi′,下确界为
m
i
′
m_{i}^{'}
mi′,同理,
1
f
(
x
)
\dfrac{1}{f(x)}
f(x)1在
[
x
i
−
1
,
x
i
]
[x_{i-1},x_{i}]
[xi−1,xi]的振幅可表示为
ω
i
(
1
f
)
=
M
i
′
−
m
i
′
=
m
a
x
{
1
f
(
x
′
)
−
1
f
(
x
′
′
)
}
\omega_{i}(\frac{1}{f})=M_i^{'}-m_i^{'}=max\{\frac{1}{f(x^{'})}-\frac{1}{f(x^{''})}\}
ωi(f1)=Mi′−mi′=max{f(x′)1−f(x′′)1}
由于
1
f
(
x
′
)
−
1
f
(
x
′
′
)
=
f
(
x
′
′
)
−
f
(
x
′
)
f
(
x
′
)
f
(
x
′
′
)
≤
f
(
x
′
′
)
−
f
(
x
′
)
m
2
\frac{1}{f(x^{'})}-\frac{1}{f(x^{''})}=\frac{f(x^{''})-f(x^{'})}{f(x^{'})f(x^{''})}\leq \frac{f(x^{''})-f(x^{'})}{m^2}
f(x′)1−f(x′′)1=f(x′)f(x′′)f(x′′)−f(x′)≤m2f(x′′)−f(x′)
因此有
ω
i
(
1
f
)
≤
1
m
2
m
a
x
{
f
(
x
′
)
−
f
(
x
′
′
)
}
=
1
m
2
ω
i
(
f
)
\omega_{i}(\frac{1}{f})\leq \frac{1}{m^2} max\{f(x^{'})-f(x^{''})\}=\frac{1}{m^2}\omega_{i}(f)
ωi(f1)≤m21max{f(x′)−f(x′′)}=m21ωi(f)
由于函数
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上黎曼可积,因此对于任意给定的
ε
>
0
,
∃
δ
>
0
,
∀
λ
=
m
a
x
1
≤
i
≤
n
(
Δ
x
i
)
<
δ
\varepsilon >0, \exists \delta>0, \forall \lambda=\mathop{max}\limits_{1\leq i \leq n}(\Delta x_{i})<\delta
ε>0,∃δ>0,∀λ=1≤i≤nmax(Δxi)<δ,使得
∑
i
=
1
n
ω
i
(
f
)
Δ
x
i
<
m
2
ε
\sum_{i=1}^n\omega_{i}(f)\Delta x_{i}<m^2\varepsilon
∑i=1nωi(f)Δxi<m2ε。从而有
∑
i
=
1
n
ω
i
(
1
f
)
Δ
x
i
≤
1
m
2
∑
i
=
1
n
ω
i
(
f
)
Δ
x
i
<
ε
\sum_{i=1}^n\omega_{i}(\frac{1}{f})\Delta x_{i}\leq \frac{1}{m^2}\sum_{i=1}^n\omega_{i}(f)\Delta x_{i}<\varepsilon
i=1∑nωi(f1)Δxi≤m21i=1∑nωi(f)Δxi<ε
此即
1
f
(
x
)
\dfrac{1}{f(x)}
f(x)1在
[
a
,
b
]
[a,b]
[a,b]上也黎曼可积。证毕。