复现nerfstudio并训练自己制作的数据集

本文详述了如何在Windows上安装NerfStudio,包括CUDA11.8的设置、PyTorch2.1.2的安装,以及解决tiny-cuda-nn安装过程中遇到的问题,还介绍了colmap和ffmpeg的配置,以及如何训练和评估自定义数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

网站:安装 - nerfstudio

GitHub - nerfstudio-project/nerfstudio:NeRF 的协作友好工作室

安装之前要确保电脑上已经有CUDA11.8或以上版本(更高版本的可以安装11.8的toolkit)

创建环境

conda create --name nerfstudio -y python=3.8
conda activate nerfstudio
python -m pip install --upgrade pip

安装依赖

首先,如果安装了2.0.1之前的PyTorch版本,则应卸载PyTorch、functhor和miny-cuda nn的早期版本。可以通过以下命令实现:

pip uninstall torch torchvision functorch tinycudann

结合CUDA11.8,安装Pytorch2.1.2

pip install torch==2.1.2+cu118 torchvision==0.16.2+cu118 --extra-index-url https://download.pytorch.org/whl/cu118

安装CUDA所需要的扩展,通过以下命令实现:

conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit

安装tiny-cuda-nn包

这里先要从github上下载tiny-cuda-nn,然后在Microsoft VIsual C++的环境下编译资源。所以如果直接执行:

pip install ninja git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch

可能会报错,提示:

× python setup.py egg_info did not run successfully.
  │ exit code: 1
  ╰─> [8 lines of output]
      Traceback (most recent call last):
        File "<string>", line 2, in <module>
        File "<pip-setuptools-caller>", line 34, in <module>
        File "C:\Users\xxx\AppData\Local\Temp\pip-req-build-lz_n7l05\bindings/torch\setup.py", line 53, in <module>
          raise RuntimeError("Could not locate a supported Microsoft Visual C++ installation")
      RuntimeError: Could not locate a supported Microsoft Visual C++ installation
      Building PyTorch extension for tiny-cuda-nn version 1.7
      Obtained compute capability 86 from PyTorch
      [end of output]

这里参考了这两篇博客:安装tiny-

评论 35
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值