GitHub - nerfstudio-project/nerfstudio:NeRF 的协作友好工作室
安装之前要确保电脑上已经有CUDA11.8或以上版本(更高版本的可以安装11.8的toolkit)
创建环境
conda create --name nerfstudio -y python=3.8
conda activate nerfstudio
python -m pip install --upgrade pip
安装依赖
首先,如果安装了2.0.1之前的PyTorch版本,则应卸载PyTorch、functhor和miny-cuda nn的早期版本。可以通过以下命令实现:
pip uninstall torch torchvision functorch tinycudann
结合CUDA11.8,安装Pytorch2.1.2
pip install torch==2.1.2+cu118 torchvision==0.16.2+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
安装CUDA所需要的扩展,通过以下命令实现:
conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit
安装tiny-cuda-nn包
这里先要从github上下载tiny-cuda-nn,然后在Microsoft VIsual C++的环境下编译资源。所以如果直接执行:
pip install ninja git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch
可能会报错,提示:
× python setup.py egg_info did not run successfully.
│ exit code: 1
╰─> [8 lines of output]
Traceback (most recent call last):
File "<string>", line 2, in <module>
File "<pip-setuptools-caller>", line 34, in <module>
File "C:\Users\xxx\AppData\Local\Temp\pip-req-build-lz_n7l05\bindings/torch\setup.py", line 53, in <module>
raise RuntimeError("Could not locate a supported Microsoft Visual C++ installation")
RuntimeError: Could not locate a supported Microsoft Visual C++ installation
Building PyTorch extension for tiny-cuda-nn version 1.7
Obtained compute capability 86 from PyTorch
[end of output]
这里参考了这两篇博客:安装tiny-

本文详述了如何在Windows上安装NerfStudio,包括CUDA11.8的设置、PyTorch2.1.2的安装,以及解决tiny-cuda-nn安装过程中遇到的问题,还介绍了colmap和ffmpeg的配置,以及如何训练和评估自定义数据集。
最低0.47元/天 解锁文章
250

被折叠的 条评论
为什么被折叠?



