R语言Tukey检验进行事后比较实例:使用Tukey检验准确找出不同组之间的差异

30 篇文章 ¥59.90 ¥99.00
本文通过实例介绍如何使用R语言进行单因素方差分析和Tukey检验,以确定不同组之间的显著差异。在药物实验数据中,通过分析Tukey检验结果,可以识别哪些组的平均反应时间存在显著差异,如组A和组D之间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言Tukey检验进行事后比较实例:使用Tukey检验准确找出不同组之间的差异

在统计学中,单因素方差分析是一种常用的方法,用于比较不同的群体或处理之间的均值差异。然而,当我们得出主效应时,我们还想知道哪些组彼此不同。这时,Tukey检验是一种常用的事后比较方法,它可以帮助我们确定哪些组之间存在着显著的差异。

在本文中,我们将通过一个实例来演示如何使用R语言进行单因素方差分析和Tukey检验,并找出不同组之间的差异。

首先,我们需要准备数据。假设我们有一个药物实验,有4个不同剂量的药物组(组A、组B、组C和组D),每个组有10个观测值。我们的目标是比较这4个组的平均反应时间是否存在差异。

下面是数据的示例:

# 创建数据框
data <- data.frame(
  group = rep(c("A", "B", "C", "D"), each = 10),
  response_time = c(5.1, 4.8, 3.9, 4.2, 4.7, 5.2, 4.4, 4.9, 5.3, 5.0,
                    6.1, 5.8, 5.2, 5.4, 6.2, 5.9, 6.5, 6.3, 6.1, 6.4,
                    4.9, 5.3, 4.8, 5.0, 4.5, 4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值