有关方差分析的所有

不是所有也会慢慢补充

方差分析,又称 F检验。
借助于方差,对数据误差来源进行分析,从而检验多个母体平均数是否相等,也就是判断均值之间是否有差异。
单因素方差分析 (ANOVA):众多因素中只有一个因素的水平有多个,其余因素只有一个水平。
多因素方差分析 (Factorial ANOVA):多个因素有多个水平。
协方差分析 (ANCOVA):以另一个间隔变量为基础对各组之间的差异进行调节或控制的方差分析方法,作为调节或控制的变量成为协变量。

一、要清楚的基本概念
指标:试验结果称为指标,一般表示为数值,用 X 表示。
因素(因子):试验中需要考察的可以控制的条件。用 A, B, C 表示。
水平:因素所处的状态,一般用 A1A2A3、… Ar表示。一般将因子控制在几个不同的状态上,每一个状态成为因素的一个水平。
举个栗子,假设我们有一片种植地,经销商向我们推销肥料(因素A),为了比较,我们暂时买了四种不同的肥料(水平 A1 A2 A3 A4),现在我们将地分成完全相同的四块(土壤类型,灌溉条件等全部相同),将四种不同的肥料施上去,看看产量(指标)怎么样。但是即使得到了指标,我们暂时也无法判断,产量的差异到底是由于取样的随机性造成的,还是真的是由于肥料的不同造成的。此时,判断肥料对产量是否有显著影响,就需要用到单因素方差分析。
颜色-因素 同色块小方块-同一因素的不同水平

二、单因素方差分析数学模型的前提假设:

  1. 影响指标的因子A有s个水平:A1 A2AS
  2. 将每个水平 Aj 下要考察的指标作为一个总体,称为部分总体,仍记为 Aj ,则共有 s 个部分总体。
    假设如下:
    每个部分总体都服从正态分布,即:
    Aj ~ N(μj, σ2j), j=1, 2,…, s
    部分总体的方差都相等,即:
    σ21= σ22= … σ2s= σ2
    不同的部分总体下的样本是相互独立的。
    其中 μ1μ2,… ,μsσ2 都是未知参数。

对每个水平 Aj 下的样本 X1j X2jXnj,共计 nj 个,引进统计量:
样本和:T·j= ∑ i = 1 n   j   \sum_{i=1}^{n~j~} i=1n j  Xij

样本均值: X ⋅ j ‾ \overline{X_{·j}} Xj= 1 n j \frac {1} {n_j} nj1 ∑ i = 1 n j \sum_{i=1}^{n_j} i=1nj= 1 n j \frac {1} {n_j} nj1T·j

样本总均值: X ‾ \overline{X} X= 1 n \frac {1} {n} n1 ∑ j = 1 s \sum_{j=1}^{s} j=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值