找出为连续数字产生最多质数的二次公式。

欧拉曾发表过一个著名的二次公式:

n² + n + 41

这个公式对于0到39的连续数字能够产生40个质数。但是当 n = 40时,402 + 40 + 41 = 40(40 + 1) + 41能够被41整除。当n = 41时, 41² + 41 + 41显然也能被41整除。

利用计算机,人们发现了一个惊人的公式:n² − 79n + 1601。这个公式对于n = 0 到 79能够产生80个质数。这个公式的系数,−79 和1601的乘积是−126479。

考虑如下形式的二次公式:

n² +  an +  b, 其中| a< 1000, | b< 1000

其中| n| 表示  n 的绝对值。
例如, |11| = 11, | −4| = 4

对于能够为从0开始的连续的n产生最多数量的质数的二次公式,找出该公式的系数乘积。

public class Test {
	static boolean is_odd(long n) {
		if (n < 2)
			return false;
		if (n == 2 || n == 3) {
			return true;
		}
		if (n % 2 == 0) {
			return false;
		}
		long i;
		for (i = 3; i < Math.sqrt(n) + 1; i++) {
			if (n % i == 0) {
				return false;
			}

		}
		return true;
	}

	public static void main(String[] args) {
		int max = 0;
		int A = 0;
		int B = 0;
		for (int a = -999; a < 1000; a += 2) {
			for (int b = 2; b < 1000; b++) {
				if (!is_odd(b))
					continue;
				int n = 0;
				int total = 0;
				while (is_odd(n * n + a * n + b)) {
					total++;
					n++;
				}
				if (total > max) {
					max = total;
					A = a;
					B = b;
				}
			}
		}
		System.out.println(A * B);
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值