欧拉曾发表过一个著名的二次公式:
n² + n + 41
这个公式对于0到39的连续数字能够产生40个质数。但是当 n = 40时,402 + 40 + 41 = 40(40 + 1) + 41能够被41整除。当n = 41时, 41² + 41 + 41显然也能被41整除。
利用计算机,人们发现了一个惊人的公式:n² 79n + 1601。这个公式对于n = 0 到 79能够产生80个质数。这个公式的系数,79 和1601的乘积是126479。
考虑如下形式的二次公式:
n² + an + b, 其中| a| 1000, | b| 1000
其中| n| 表示 n 的绝对值。
例如, |11| = 11, | 4| = 4
对于能够为从0开始的连续的n产生最多数量的质数的二次公式,找出该公式的系数乘积。
public class Test {
static boolean is_odd(long n) {
if (n < 2)
return false;
if (n == 2 || n == 3) {
return true;
}
if (n % 2 == 0) {
return false;
}
long i;
for (i = 3; i < Math.sqrt(n) + 1; i++) {
if (n % i == 0) {
return false;
}
}
return true;
}
public static void main(String[] args) {
int max = 0;
int A = 0;
int B = 0;
for (int a = -999; a < 1000; a += 2) {
for (int b = 2; b < 1000; b++) {
if (!is_odd(b))
continue;
int n = 0;
int total = 0;
while (is_odd(n * n + a * n + b)) {
total++;
n++;
}
if (total > max) {
max = total;
A = a;
B = b;
}
}
}
System.out.println(A * B);
}
}