负二项分布函数(Negative Binomial Distribution)及其在R语言中的应用

101 篇文章

已下架不支持订阅

本文介绍了负二项分布的概念及其在统计学中的应用,详细讲解了R语言中计算负二项分布概率质量函数、累积分布函数、分位数及生成随机数的方法,强调了R语言在负二项分布分析中的实用性和便利性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

负二项分布函数(Negative Binomial Distribution)及其在R语言中的应用

负二项分布(Negative Binomial Distribution)是概率论中重要的离散概率分布之一,用于描述成功次数的概率分布,直到固定数量的失败次数发生为止。在统计学和概率论中,负二项分布通常用于建模离散事件的计数数据,例如在二项分布中的成功次数。

负二项分布的概率质量函数(Probability Mass Function,PMF)可以表示为:

P(X = k) = (k + r - 1)C(k) * p^r * (1 - p)^k

其中,X是成功次数的随机变量,k是成功次数的取值,r是失败次数,p是每次独立事件成功的概率,C(k)是组合数。

在R语言中,可以使用dnbinom()函数计算负二项分布的概率质量函数值。下面是一个示例代码,展示了如何使用R语言计算负二项分布的概率质量函数值:

# 导入负二项分布函数包
library(extraDistr)

# 设置参数
r <- 5     # 失败次数
p <- 0.3   # 成功概率

# 计算负二项分布的概率质量函数值
k <- 0:20  # 成功次数的取值范围
prob <- dnbinom

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值