tarjan算法总结

部分内容引自https://www.cnblogs.com/stxy-ferryman/p/7779347.html

该篇代码仅仅是对思路的一个展现,并没有去题目中验证,可能会有些许误差

Tarjan算法不是一个算法而是一类算法

1.求取强连通分量

  强连通分量————有向图的强连通子图

  tarjan算法基于dfs,利用栈的思想,把下面所有的点都遍历完毕后,所能链接的最小祖先节点(可能没有),就是要寻找的强连通分量

  所以我们需要dfn数组存储dfs的遍历顺序,low数组存储这个节点后所有的子孙节点所能到达的最小节点(dfn最小)值

  为了能够得知构成这个强连通分量的所有的点,可以利用栈去记录,因为退的时候,肯定是退到最头上(如果有额外的分支,那么之前肯定早就退栈了)

  当我们遍历的时候初始化时dfn = low = idx这个初始化意思很好懂,如果没有后继节点,值就是这个

  接下来我们可能会面对三种点

  ·没有遍历过的,我们就递归tarjan遍历,然后优化low[u] = min(low[u],low[v])

  ·我们遍历过了,这个点还在栈中,那就代表这个点u可以到达,所以我们更新的时候,low[u] = min(low[u],dfn[v])_____你要知道此时的low[v]是取决于现在的low[u]的因为v在栈中,所以u是v的后继节点,这是一条返祖边

  ·我们遍历过了,这个点不在栈中了,证明这个点经历了一次退栈,形成了一次联通分量,但是不包括u,因为这个点不能到达u,如果这个点可以到达u的话,u又可以到达这个点,那么就不会退栈了(这里的到达都是要经过子孙节点的),所以对于这样的点,不必考虑任何问题

 所以直到遍历完所有的子孙节点我们就可以进行退栈的操作了,那些独立的联通分量的标志就是

  low == dfn

  意思就是对于节点u,其子孙节点所能到达的最大节点就是u,也就是形成了一个回路,环,而且可以保证这个环是最大的

所以说了这么多,以上的算法思想用于求取一个图的强连通分量——最后进行color染色处理

void tarjan_liantongfenliang(int u,int fa)
{
    dfn[u] = low[u] = ++index;
    stk[s_cnt++] = u;
    instk[u] = true;
    
    for(int i = id[u];~i;i = e[i].pre)
    {
        int v = e[i].to;
        if(!dfn[v])
        {
            tarjan(v,u);
            low[u] = min(low[u],low[v]);
        }
        else if(instk[v] == true)
        {
            low[u] = min(low[u],dfn[v]);
        }
    }
    if(dfn[u] == low[u])
    {
        col++;
        while(s_cnt > 0 && stk[s_cnt] != u)
        {
            s_cnt --;
            color[stk[s_cnt]] = col;
            instk[stk[s_cnt]] = false;
        }
    }
}

 2.tarjan缩点

利用tarjan算法可以把一个图变成单向无环图

这个继承自强连通分量,对于每一个强连通分量,我们能够看出一个超级点,这个超级点的内部可以互相到达,然后根据这个图所表示的含义,通常要去计算超级点的度,最后输出满足题意的超级点内所有的点

和上面的代码一致

3·求割点和桥(割边)

割点:去掉这个点(和这个点外射的所有边),把一个连通图变成多个连通分量

割边:同样的道理,去掉这条边,把一个连通图变成多个连通分量

这时候我们要判断何时是一个割点

  1.当前节点是根节点——从这个节点开始的dfs,所以如果这个点有两个子树,那么就是一个割点

  2.任意节点,如果low[v] >= dfn[u],表示u的这个子孙能够到达的最小祖先节点是比u小的,所以u是子孙v连接祖先的关键点

 

所以最让我不解的问题解决了,就是执行low更新时候的问题求取连通分量的时候,对于访问过的,不在栈的要忽略处理,因为不可能为同一个连通分量

对于割点割边,对于双向边进行忽略其余的访问过的按照定义更新

说了再多注意一下情况,强连通分量要注意已经出栈的量,他不可能在形成强连通分量

对于割点,注意两点之间的双线边操作,这样是毫无意义的割点

void tarjan_gedian(int u,int fa)
{
    int son = 0;
    dfn[u] = low[u] = ++index;
    for(int i = id[u];~i;i = e[i].pre)
    {
        int v = e[i].to;
        if(!dfn[v])
        {
            tarjan(v,u);
            son++;
            low[u] = min(low[u],low[v]);
            if(u != root && low[v] >= dfn[u])
            {
                cut_point[u] = 1;
            }
            else if(u == root && son > 1)
            {
                cut_point[u] = 1;
            }
        }
        else if(v != fa)
        {
            low[u] = min(low[u],dfn[v]);
        }
    }
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Tarjan算法和Kosaraju算法都是求解有向图强连通分量的算法,它们的时间复杂度都为O(N+M),其中N为图中节点数,M为图中边数。 Tarjan算法的基本思想是通过DFS遍历图中的节点,并在遍历的过程中维护一个栈,用于存储已经遍历过的节点。在遍历的过程中,对于每个节点,记录它被遍历到的时间戳和能够到达的最小时间戳,当一个节点的最小时间戳等于它自身的时间戳时,说明这个节点及其之前遍历到的节点构成了一个强连通分量,将这些节点从栈中弹出即可。 Kosaraju算法的基本思想是先对原图进行一次DFS,得到一个反向图,然后再对反向图进行DFS。在第二次DFS的过程中,每次从未被访问过的节点开始遍历,遍历到的所有节点构成一个强连通分量。 两种算法的具体实现可以参考以下代码: ```python # Tarjan算法 def tarjan(u): dfn[u] = low[u] = timestamp timestamp += 1 stk.append(u) for v in graph[u]: if not dfn[v]: tarjan(v) low[u] = min(low[u], low[v]) elif v in stk: low[u] = min(low[u], dfn[v]) if dfn[u] == low[u]: scc = [] while True: v = stk.pop() scc.append(v) if v == u: break scc_list.append(scc) # Kosaraju算法 def dfs1(u): vis[u] = True for v in graph[u]: if not vis[v]: dfs1(v) stk.append(u) def dfs2(u): vis[u] = True scc.append(u) for v in reverse_graph[u]: if not vis[v]: dfs2(v) # 构建图和反向图 graph = [[] for _ in range(n)] reverse_graph = [[] for _ in range(n)] for u, v in edges: graph[u].append(v) reverse_graph[v].append(u) # Tarjan算法求解强连通分量 dfn = [0] * n low = [0] * n timestamp = 1 stk = [] scc_list = [] for i in range(n): if not dfn[i]: tarjan(i) # Kosaraju算法求解强连通分量 vis = [False] * n stk = [] scc_list = [] for i in range(n): if not vis[i]: dfs1(i) vis = [False] * n while stk: u = stk.pop() if not vis[u]: scc = [] dfs2(u) scc_list.append(scc) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值