sklearn:特征与树木森林的重要性

此博客展示了如何利用树木森林来评估特征在人工分类任务中的重要性。内容提到,通过森林的特征重要性和树间变异性,确认了前3个特征对任务有显著贡献,其余特征信息量较小。
摘要由CSDN通过智能技术生成

这个例子展示了使用树木森林来评估特征对人工分类任务的重要性。 红色条是森林的特征重要性,以及它们的树间变异性。

正如预期的那样,该情节表明3个特征是提供信息的,而其余的则没有。

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import make_classification
from sklearn.ensemble import ExtraTreesClassifier

# Build a classification task using 3 informative features
X, y = make_classification(n_samples=1000,
                           n_features=10,
                           n_informative=3,
                           n_redundant=0,
                           n_repeated=0,
                           n_classes=2,
                           random_state=0,
                           shuffle=False)

# Build a forest and compute the feature importances
forest = ExtraTreesClassifier(n_estimators=250,
                              random_state=0)

forest.fit(X, y)
importances = forest.feature_importances_
std = np.std([t
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值