论文笔记四【边缘计算结合区块链】

论文笔记_大作业PPT: 这是我自己做的配套PPT,仅供参考 (gitee.com)

边缘计算是一种分布式计算框架,它将计算和数据存储从中心(比如大型数据中心或云端)推向网络的“边缘”,即设备或终端更接近用户或数据源的地方,例如 IoT 设备或本地边缘服务器。这种与源头数据的接近可以带来强大的优势,包括更快的洞察、更短的响应时间和更好的带宽可用性。

一、目前问题与解决方案 

1.1问题

尽管边缘计算系统能够将资源分配到网络边缘,为终端用户提供低时延的网络服务,但实际实施时,边缘计算及其配套解决方案依然面临一些问题,核心挑战为以下两个方面:安全保护和资源管理

在边缘计算中,攻击者可能使用分布式拒绝服务攻击增加中心服务器的计算负担,进而影响数据传输的正确性。将区块链技术引入边缘计算,从而验证每个服务器的真实性,并创建一个安全的卸载环境。在雾计算环境中基于区块链的卸载方法旨在改善候选 Fog 服务器的查询延迟以及卸载安全性。模拟结果证实了该方法的效率和有效性。同时基于区块链的方法有其天然的局限性,如果雾服务器可以并行处理多个请求,那么自己服务器和其他服务器上的所有交易都需要写入每个服务器的区块链数据库中。这涉及大量同步开销。此外在区块链网络中处理的交易越多,数据库规模的增长速度就越快。

1.2边缘计算中的区块链技术

使用区块链保存电子病历的过程中,加密病历的密钥可能遭受统计攻击,而模糊保险箱算法能有效避免这一攻击,并通过保存密钥线索的方式存储已使用密钥,降低因保存过往密钥而导致的存储能耗。

在具有高移动性的移动边缘网络中,使用区块链灵活透明地统筹密钥管理程序中的成员出人,能够大幅提高密钥管理的效率和准确性,保护参与者的密钥及数据安全。

一种面向车联网的基于区块链、智能合约和属性加密的文件分享方案,可以在保证文件分享效率的同时利用区块链和智能合约技术避免第三方参与,保护数据安全。

在移动边缘计算场景下还需考虑隐私保护问题。为对边缘计算系统中的敏感数据进行隐私保护。下面是一种基于矩阵的多通道数据分段与隔离方案。提出了一种安全可验证的数据共享方案,允许数据所有者定义访问策略。使用区块链记录数据的访问策略,实现用户自认证和云不可否认性。提出了一种策略隐藏方案,以隐藏访问策略中包含的敏感信息。支持数据撤销,当车辆用户不再希望在VSNs中共享数据时。该方案允许用户自定义敏感数据的加密方法,并提供条件访问和解密查询方法,通过受保护的智能合约进行各项操作。

现有基于PoW机制的区块链技术多数需要强大的计算能力与大量的能量消耗,而移动智能设备计算与能量资源有限,因此移动端在独立执行PoW机制时仍面临巨大挑战。将资源分配建模成优化问题,通过最优化算法得到计算卸载的最佳方案。区块链技术因其在去中心化环境中建立信任的能力而被应用于多个领域。然而,无线移动网络中区块链的应用受到挖矿过程中工作量证明(PoW)难题的计算能力要求高的挑战。该方案提出一种新型的边缘计算无线区块链框架ADMM允许计算密集型的挖矿任务卸载到附近的边缘计算节点,并在MEC服务器中缓存区块的加密哈希。考虑了两种卸载模式:卸载到附近的接入点(AP)或一组附近的用户。

二、具体案例讲解

2.1 边缘计算实现移动设备挖矿

边缘计算与区块链结合,一个比较有意思的案例就是使用移动设备挖矿。以太坊是一个开源的区块链平台,它允许开发者创建和部署智能合约(自动执行的合约)和去中心化的应用程序(DApps)。区块链挖矿是一种验证和添加交易到区块链上的过程。对于以太坊来说,挖矿是通过 Proof of Work (PoW) 共识机制进行的,即矿工通过解决复杂的数学问题来验证交易并生成新的区块,实际上是通过“穷举法”找出满足条件的哈希值,用算力换取奖励,在以太坊中用的是以太坊币 (ETH),现在一个ETH是3674美元。如果通过传统方式挖矿,你需要一台性能不错的机器,不仅要考虑硬件成本,还要考虑电费、噪音、空间等问题。边缘计算可以提供分布式计算能力,允许更多设备参与挖矿任务,提升挖矿效率。

这里有张图可以更好地帮大家理解这个挖矿模式:

首先,我们需要一台边缘计算服务器,或者叫矿池服务器,也叫边缘计算节点,它不需要承担大量计算任务,所以不会出现电费、噪音、能耗大等传统问题。它负责任务分配——将自己的挖矿任务分配给不同的矿工(在图中指的是移动设备和其他可以利用的计算资源);数据整合——收集并整合来自各个矿工(如手机)的计算结果,验证区块,再提交到区块链网络,也就是提交到以太坊;奖励分配——根据每个矿工贡献的算力,公平地分配区块奖励。只用移动设备的算力,自然是不够的,通过边缘计算节点的支持,能够更快速地解决挖矿难题,提升整个矿池的算力。具体操作如图所示:

在这个原型系统中,边缘计算服务器通过Intel Xeon CPU E5-1630实现,该服务器运行以太坊(Ethereum)区块链服务,起到一个承上启下的作用——即将计算任务下放到移动设备,将计算结果上传到以太坊,参与区块链的交易验证和智能合约执行,相关信息通过终端显示出来。这几台移动设备只需要下载一个app,就能执行服务器下发的计算任务。不仅仅是手机,还可以是其他物联网设备,如智能电表、传感器等,它们通常都具备一定的计算能力,可以通过边缘计算技术参与到区块链挖矿中。移动设备比较节能,而且有数量优势,属于大规模分布式计算资源,为挖矿带来新的思路和应用场景。

2.2 智能家居

再补充另外一个比较常见的案例,就是智能家居,这个案例与安全问题相关。智能家居系统中的许多设备(如智能冰箱、智能灯泡、家庭安防摄像头等)通常会收集大量的家庭和个人数据,如果将这些数据上传到设备制造商或零售商控制的数据库,就会面临严重的隐私问题,黑客可能攻击这些集中存储的数据,从而盗取用户信息。如果我们使用边缘计算,让设备通过部署在家里的局域网来处理数据,而不让云端处理所有数据,并引入区块链——用于记录家庭设备与服务的交易,例如设备的控制指令、数据交换等,每个设备或用户的行为都可以通过区块链进行加密记录,确保数据的安全性和不可篡改性,这个图展示了数据上区块链的方式,可以选择全量上链和摘要上链。还可以利用区块链的智能合约,让家居设备在符合预设条件时自动执行某些操作,例如,当家中的温度达到某个水平时,自动调整空调的设定温度,或者根据某些事件触发家庭安全系统。智能合约可以在区块链中自动执行,而不需要人工干预。事实上,这些技术确实已经引进到我们的现实生活中了。

三、未来研究方向

3.1资源管理

大量异构边缘设备在空闲时可以协作,借助边缘服务器或其他设备提供资源来完成任务。6G及以上环境下,空、天、地、海网络的深度融合将引入更多的网络设备和异构接入设备,增加资源管理挑战。

数据共享和知识发现,需要ML或其他技术执行计算密集任务。区块链本身的维护也需要大量计算资源,进一步增加资源管理的复杂性。随着万物互联时代发展,设备和设施的快速增加导致设备的扩散性、异构性和频繁上下线,增加了资源整合和管理难度。

设计合理、实用、高效的竞价定价机制,以激励设备参与资源交换。利用新兴技术(如FL),构建基于AI的自适应边缘智能资源管理系统,解决系统的动态性和复杂性。

3.2安全问题

智能合约通常用于实现资源分配、身份认证和访问控制等功能,具有高效、定制化、灵活性和自动化等优点。然而,智能合约存在安全漏洞、无法修改的错误代码、恶意代码等问题,可能导致经济损失,并且缺乏有效的法律监管。

大量异构设备需要认证才能加入网络,边缘侧面临巨大计算压力。认证标准多种多样,导致设计统一、轻量、快速的认证机制变得困难。

智能合约的安全性:设计实用的区块链隐私保护加密流量检查方案,保护智能合约隐私的同时,检测出智能合约的异常和可疑代码。边缘设备高效识别:设计分布式物联网设备识别机制,以及推动物联网设备识别协议的标准化。

3.3性能和存储容量

区块链的不断增长导致存储需求增加,影响扩展和性能。工作量证明(PoW)共识算法消耗大量资源,且交易速度较慢(例如,比特币每秒仅处理7笔交易)。区块链增大后,数据传播速度变慢,可能导致分叉问题。分片技术(Sharding): 将区块链分成较小的部分,减少单个节点的负担。如闪电网络等将交易转移到链外,减少主链的拥堵。共识算法改进: 从PoW转向更节能的共识算法,例如权益证明(PoS)或权威证明(PoA)。

探索混合共识机制,结合PoW和PoS的优点。研究自适应区块链架构,根据网络负载动态调整。探讨区块链压缩技术,在不妥协安全性或去中心化的前提下,减少数据存储。

3.4可扩展性

随着交易数量的增加,区块链网络(如比特币和以太坊)面临可扩展性问题,交易处理能力有限(TPS低)。增加的交易量导致延迟和高交易费用。区块链分叉和硬分叉: 实施比特币现金(Bitcoin Cash)和以太坊2.0等可扩展解决方案。链外扩展解决方案: 使用侧链或第二层网络将交易负担从主链上卸载。

开发更高效的区块传播算法,加快交易验证速度。研究区块链之间的互操作性,实现跨链交易,减少瓶颈。探索零知识证明(ZKP)技术,以更高效的方式验证交易,而无需泄露交易数据。

3.5隐私计算

车联网、工业物联网、智慧医疗需要大规模的数据共享和知识发现。分析大量患者记录进行知识发现,或共享GPS定位数据以纠正自动驾驶中的错误。随着更多设备产生数据且利益相关者增加,数据共享的需求日益增长。基于区块链的边缘计算系统中存储大量个人敏感数据,因此数据隐私保护至关重要。现有研究侧重于数据的安全性,但受限于区块链底层安全机制,传统的隐私保护机制复杂,不适用于边缘设备。

现阶段与数据隐私计算相关技术包括隐私增强计算(PEC)、多方安全计算(MPSC)等,要考虑边缘设备资源有限和计算卸载需求巨大的问题。对PEC算法、MPSC算法或其他能够保护数据计算隐私的算法进行轻量级、并行化、模块化的优化,或许是提升IBEC系统适用性和可扩展性的新趋势。

3.6能源消耗

PoW共识机制消耗大量电力,使得区块链不适合大规模应用。比特币等区块链项目的碳足迹过大,甚至对全球变暖产生了不小的影响。绿色共识机制: 转向更节能的共识算法,如PoS或时空证明(PoST),减少能源消耗。可再生能源: 鼓励矿工使用可再生能源来为其操作提供动力。

研究节能区块链协议,平衡去中心化和能源使用的最小化。探索基于边缘计算节点的区块链处理方式,利用本地能源源减少对集中式数据中心的依赖。研究混合PoW/PoS模型,在保持PoW安全性的同时,提升能效。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张_Zachary

你的支持是我产出优质作品的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值