雷达信号检测问题与奈曼-皮尔逊准则

雷达信号检测问题与奈曼-皮尔逊准则

​ 雷达信号检测问题属于一个二元检测问题,即或者为目标加噪声情况,或者为仅含有噪声情况。对观察信号空间 D D D的划分问题,即将 D D D空间划分为 D 1 D_1 D1 (有信号)和 D 0 D_0 D0 (无信号)两个子空间,并满足 D = D 0 ∪ D 1 D=D_0\cup D_1 D=D0D1 D 0 ∩ D 1 = ∅ D_0\cap D_1=\emptyset D0D1=。子空间 D 0 D_0 D0 D 1 D_1 D1称为判决域。若某个观测量 ( x ∣ H i ) ( i = 0 , 1 ) (x|{{H}_{i}})(i=0,1) (xHi)(i=0,1)落入 D 1 D_1 D1域,就判决假设 H 1 H_1 H1成立,否则就判决假设 H 0 H_0 H0成立。

​ 在不考虑杂波与干扰的问题下,认为接收回波中仅可能存在信号加噪声或纯噪声这两种情况。将仅含有噪声的情况设为 H 0 H_0 H0假设,含有信号加噪声的情况为 H 1 H_1 H1假设,有
{ H 0 : x ( t ) = n ( t ) H 1 : x ( t ) = s ( t ) + n ( t ) \left\{ \begin{aligned} & {{H}_{0}}:x(t)=n(t) \\ & {{H}_{1}}:x(t)=s(t)+n(t) \\ \end{aligned} \right. {H0:x(t)=n(t)H1:x(t)=s(t)+n(t)
其中 n ( t ) n(t) n(t)为均值为0,方差为 σ n 2 \sigma_n^2 σn2的高斯白噪声, s ( t ) s(t) s(t)为确知信号。对二元检测问题,存在两种正确判决和两种错误判决:
P d = P ( H 1 ∣ H 1 ) P n = P ( H 0 ∣ H 0 ) P m = P ( H 0 ∣ H 1 ) P f a = P ( H 0 ∣ H 0 ) \begin{aligned} & {{P}_{d}}=P({{H}_{1}}|{{H}_{1}}) \\ & {{P}_{n}}=P({{H}_{0}}|{{H}_{0}}) \\ & {{P}_{m}}=P({{H}_{0}}|{{H}_{1}}) \\ & {{P}_{fa}}=P({{H}_{0}}|{{H}_{0}}) \\ \end{aligned} Pd=P(H1H1)Pn=P(H0H0)Pm=P(H0H1)Pfa=P(H0H0)
其中, P d {{P}_{d}} Pd为检测概率, P n {{P}_{n}} Pn为正确不发现概率, P m {{P}_{m}} Pm为漏警概率, P f a {{P}_{fa}} Pfa为虚警概率。

​ 检测概率与漏警概率的关系为:
P d + P m = P ( H 1 ∣ H 1 ) + P ( H 0 ∣ H 1 ) = 1 {{P}_{d}}+{{P}_{m}}=P({{H}_{1}}|{{H}_{1}})+P({{H}_{0}}|{{H}_{1}})=1 Pd+Pm=P(H1H1)+P(H0H1)=1
​ 正确不发现概率与虚警概率的关系为:
P n + P f a = P ( H 0 ∣ H 0 ) + P ( H 1 ∣ H 0 ) = 1 {{P}_{n}}+{{P}_{fa}}=P({{H}_{0}}|{{H}_{0}})+P({{H}_{1}}|{{H}_{0}})=1 Pn+Pfa=P(H0H0)+P(H1H0)=1
​ 假设 H 0 {{H}_{0}} H0出现的先验概率为 P ( H 0 ) P({{H}_{0}}) P(H0) H 1 {{H}_{1}} H1出现的先验概率为 P ( H 1 ) P({{H}_{1}}) P(H1),观测信号 x ( t ) x(t) x(t) H 1 {{H}_{1}} H1假设下的条件概率密度函数为:
p ( x ∣ H 0 ) = 1 ( 2 π ) σ n e − x 2 2 σ n 2 p(x|{{H}_{0}})=\frac{1}{\sqrt{(2\pi )}{{\sigma }_{n}}}{{e}^{-\frac{{{x}^{2}}}{2\sigma _{n}^{2}}}} p(xH0)=(2π) σn1e2σn2x2
x ( t ) x(t) x(t) H 0 {{H}_{0}} H0假设下的条件概率密度函数为:
p ( x ∣ H 1 ) = 1 ( 2 π ) σ n e − ( x − s ) 2 2 σ n 2 p(x|{{H}_{1}})=\frac{1}{\sqrt{(2\pi )}{{\sigma }_{n}}}{{e}^{-\frac{{{(x-s)}^{2}}}{2\sigma _{n}^{2}}}} p(xH1)=(2π) σn1e2σn2(xs)2
​ 设定判决门限 V T {{V}_{T}} VT,若输入信号的包络超过了该门限,则认为有目标,否则认为没有目标。故根据 H 1 {{H}_{1}} H1假设下的条件概率密度函数可得检测概率为:
P d = ∫ V T ∞ p ( x ∣ H 1 ) d x {{P}_{d}}=\int_{{{V}_{T}}}^{\infty }{p(x|{{H}_{1}})dx} Pd=VTp(xH1)dx
根据 H 0 {{H}_{0}} H0假设下的条件概率密度函数可得虚警概率为:
P f a = ∫ V T ∞ p ( x ∣ H 0 ) d x {{P}_{fa}}=\int_{{{V}_{T}}}^{\infty }{p(x|{{H}_{0}})dx} Pfa=VTp(xH0)dx
​ 判决门限 V T {{V}_{T}} VT的选择与所采用的最佳检测检测准则有关。常用的最佳检测准则有最大后验概率准则、贝叶斯准则、极小极大化准则、最小错误概率准则、奈曼-皮尔逊准则等。在雷达信号检测领域,由于预先未知目标出现的概率,很难确定一次漏警所造成的损失。在一定的虚警概率下,使漏警概率最小或使检测概率最大,为奈曼-皮尔逊准则。

​ 数学上,用如下表达式来描述奈曼-皮尔逊准则:
P e = P m + λ 0 P f a = P ( H 0 ∣ H 1 ) + λ 0 P ( H 1 ∣ H 0 ) {{P}_{e}}={{P}_{m}}+{{\lambda }_{0}}{{P}_{fa}}=P({{H}_{0}}|{{H}_{1}})+{{\lambda }_{0}}P({{H}_{1}}|{{H}_{0}}) Pe=Pm+λ0Pfa=P(H0H1)+λ0P(H1H0)
​ 由于检测概率与漏警概率之间满足 P d + P m = 1 {{P}_{d}}+{{P}_{m}}=1 Pd+Pm=1,有
P e = 1 − P d + λ 0 P f a = 1 − P ( H 1 ∣ H 1 ) + λ 0 P ( H 1 ∣ H 0 ) {{P}_{e}}=1-{{P}_{d}}+{{\lambda }_{0}}{{P}_{fa}}=1-P({{H}_{1}}|{{H}_{1}})+{{\lambda }_{0}}P({{H}_{1}}|{{H}_{0}}) Pe=1Pd+λ0Pfa=1P(H1H1)+λ0P(H1H0)
​ 为提高判决质量,减小噪声干扰随机性的影响,一般需要对接收信号进行多次观测采样,对于 N N N次独立取样,输入信号为 N N N维空间,接收样本矢量表示为
x = [ x 1 , x 2 , . . . , x N ] T \mathbf{x}={{[{{x}_{1}},{{x}_{2}},...,{{x}_{N}}]}^{\text{T}}} x=[x1,x2,...,xN]T
​ 当输入为 x ( t ) = s ( t ) + n ( t ) x(t)=s(t)+n(t) x(t)=s(t)+n(t)时, N N N个取样点的联合概率分布密度函数为 p ( x 1 , x 2 , ⋯   , x N ∣ H 1 ) p({{x}_{1}},{{x}_{2}},\cdots ,{{x}_{N}}|{{H}_{1}}) p(x1,x2,,xNH1),当输入为 x ( t ) = n ( t ) x(t)=n(t) x(t)=n(t)时,其联合概率分布密度函数为 p ( x 1 , x 2 , ⋯   , x N ∣ H 0 ) p({{x}_{1}},{{x}_{2}},\cdots ,{{x}_{N}}|{{H}_{0}}) p(x1,x2,,xNH0),检测概率和虚警概率分别为
P d = ∬ D 1 ⋅ ⋅ ⋅ ∫ p ( x 1 , x 2 , ⋅ ⋅ ⋅ ⋅ x N ∣ H 1 ) d x 1 d x 2 ⋅ ⋅ ⋅ d x N {{P}_{d}}=\iint_{{{D}_{1}}}{\cdot }\cdot \cdot \int{p}({{x}_{1}}\text{,}{{x}_{2}}\text{,}\cdot \cdot \cdot \cdot {{x}_{N}}\mid {{H}_{1}})\text{d}{{x}_{1}}\text{d}{{x}_{2}}\cdot \cdot \cdot \text{d}{{x}_{N}} Pd=D1p(x1,x2,xNH1)dx1dx2dxN

P f a = ∬ D 1 ⋅ ⋅ ⋅ ∫ p ( x 1 , x 2 , ⋅ ⋅ ⋅ x N ∣ H 0 ) d x 1 d x 2 ⋅ ⋅ ⋅ d x N {{P}_{fa}}=\iint_{{{D}_{1}}}{\cdot }\cdot \cdot \int{p}({{x}_{1}}\text{,}{{x}_{2}}\text{,}\cdot \cdot \cdot {{x}_{N}}\mid H_0)\text{d}{{x}_{1}}\text{d}{{x}_{2}}\cdot \cdot \cdot \text{d}{{x}_{N}} Pfa=D1p(x1,x2,xNH0)dx1dx2dxN

则总错误概率与联合概率分布密度函数的关系为
P e = 1 − ∬ D 1 ⋅ ⋅ ⋅ ∫ [ p ( x 1 , x 2 , ⋅ ⋅ ⋅ , x N ∣ H 1 ) − λ 0 p ( x 1 , x 2 , ⋅ ⋅ ⋅ x N ∣ H 0 ) ] d x 1 d x 2 ⋅ ⋅ ⋅ d x N {{P}_{\text{e}}}=1-\iint_{{{D}_{1}}}{\cdot }\cdot \cdot \int{\left[ p\left( {{x}_{1}},{{x}_{2}},\cdot \cdot \cdot ,{{x}_{N}}\mid {{H}_{1}} \right)-{{\lambda }_{0}}p\left( {{x}_{1}},{{x}_{2}},\cdot \cdot \cdot {{x}_{N}}\mid {{H}_{0}} \right) \right]}\text{d}{{x}_{1}}\text{d}{{x}_{2}}\cdot \cdot \cdot \text{d}{{x}_{N}} Pe=1D1[p(x1,x2,,xNH1)λ0p(x1,x2,xNH0)]dx1dx2dxN
观察空间的划分应保证总错误概率 P e {{P}_{\text{e}}} Pe最小,即后面的积分值最大。因此有
p ( x 1 , x 2 , ⋅ ⋅ ⋅ , x N ∣ H 1 ) − λ 0 p ( x 1 , x 2 , ⋅ ⋅ ⋅ x N ∣ H 0 ) ≥ 0 p\left( {{x}_{1}},{{x}_{2}},\cdot \cdot \cdot ,{{x}_{N}}\mid {{H}_{1}} \right)-{{\lambda }_{0}}p\left( {{x}_{1}},{{x}_{2}},\cdot \cdot \cdot {{x}_{N}}\mid {{H}_{0}} \right)\ge 0 p(x1,x2,,xNH1)λ0p(x1,x2,xNH0)0
的点判定为有信号,否则判定为无信号。即
p ( x 1 , x 2 … x N ∣ H 1 ) p ( x 1 , x 2 … x N ∣ H 0 ) { ≥ λ 0 < λ 0 \frac{p({{x}_{1}}\text{,}{{x}_{2}}\ldots {{x}_{N}}\mid {{H}_{1}})}{p({{x}_{1}}\text{,}{{x}_{2}}\ldots {{x}_{N}}\mid {{H}_{0}})}\left\{ \begin{aligned} & \ge {{\lambda }_{0}}\quad \\ & <{{\lambda }_{0}}\quad \\ \end{aligned} \right. p(x1,x2xNH0)p(x1,x2xNH1){λ0<λ0
参考文献:

[1] 陈伯孝等. 现代雷达系统分析与设计[M]. 陕西:西安电子科技大学出版社. 2012.

  • 9
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
奈曼-皮尔逊准则是用来评估信号检测性能的方法之一。该准则基于概率论和统计学原理,能够帮助我们优化分类器的阈值选择,从而实现更准确的信号检测。 在MATLAB中,我们可以使用以下代码来实现奈曼-皮尔逊准则: ```matlab % 假设我们有两个信号样本集,x1和x2,它们分别表示信号的观测值在假设H1和H0下的概率密度函数(PDF), % 我们需要设置一个阈值T来决定信号的分类,T的选择会影响信号检测的性能。 % 计算信号样本集的PDF [m1, v1] = normfit(x1); % 假设信号为高斯分布,使用normfit()函数估计均值m1和方差v1 [m2, v2] = normfit(x2); % 选择优化的阈值T % 根据奈曼-皮尔逊准则,我们需要找到一个阈值T使得满足两个条件: % 1. 假设H0下信号大于T的观测概率+ 假设H1下信号小于T的观测概率= Pfa(假阳性概率) % 2. 假设H1下信号大于T的观测概率= Pd(检测概率) % 其中Pfa和Pd是我们可以事先确定的性能指标。 % 根据信号的高斯分布特性,我们可以使用概率密度函数的积分来计算这两个条件: syms t; pfa = int(normpdf(t, m1, v1), t, T, Inf) + int(normpdf(t, m2, v2), t, T, Inf); pd = int(normpdf(t, m2, v2), t, T, Inf); % 为了找到最优的阈值T,我们可以采用迭代的方式来搜索最大pd值对应的阈值T: T_opt = 0; % 初始化最优阈值为0 pd_max = 0; % 初始化最大pd值为0 step = 0.1; % 设置步长 for T = min([x1,x2]):step:max([x1,x2]) % 在信号样本集的最小值和最大值范围内搜索 pfa_t = int(normpdf(t, m1, v1), t, T, Inf) + int(normpdf(t, m2, v2), t, T, Inf); pd_t = int(normpdf(t, m2, v2), t, T, Inf); % 更新最优阈值和最大pd值 if pd_t > pd_max && pfa_t <= Pfa_threshold % 只更新当pfa_t小于指定的阈值时的最大pd值 pd_max = pd_t; T_opt = T; end end % 输出结果 disp(['最优阈值T_opt = ', num2str(T_opt)]); disp(['最大检测概率Pd_max = ', num2str(pd_max)]); ``` 这段代码中,我们首先使用`normfit()`函数估计信号的均值和方差,并利用`normpdf()`函数计算概率密度函数。然后,我们根据奈曼-皮尔逊准则,通过迭代搜索的方式找到最大检测概率对应的最优阈值T。 需要注意的是,代码中的Pfa_threshold是我们可以事先确定的假阳性概率阈值。根据应用需求,我们可以根据信号检测的可靠性要求设定该阈值。 以上就是关于奈曼-皮尔逊准则的MATLAB代码实现,希望能对你有所帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值