极坐标格式下的二维傅里叶变换与逆变换推导

极坐标格式下的二维傅里叶变换与逆变换推导

直角坐标系下的二维傅里叶变换和逆变换分别如下:
G ( u , v ) = ∬ g ( x , y ) e − j 2 π ( u x + v y ) d x d y g ( x , y ) = ∬ G ( u , v ) e j 2 π ( u x + v y ) d u d v G(u,v)=\iint g(x,y)e^{-j2\pi (ux+vy)}dxdy \\ g(x,y)=\iint G(u,v)e^{j2\pi(ux+vy)}dudv G(u,v)=g(x,y)ej2π(ux+vy)dxdyg(x,y)=G(u,v)ej2π(ux+vy)dudv
现在,令
x = r c o s θ y = r s i n θ u = f c o s ϕ v = f s i n ϕ x=rcos\theta \quad y=rsin\theta \quad u=fcos\phi \quad v=fsin\phi x=rcosθy=rsinθu=fcosϕv=fsinϕ
由于
J ( r , θ ) = ∣ ∂ x ∂ r ∂ x ∂ θ ∂ y ∂ r ∂ y ∂ θ ∣ J(r,\theta)=\begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} J(r,θ)=rxryθxθy
则, J ( r , θ ) = ∣ c o s θ − r s i n θ s i n θ r c o s θ ∣ = r J(r,\theta)=\begin{vmatrix} cos\theta & -rsin\theta \\ sin\theta & rcos\theta \end{vmatrix}=r J(r,θ)=cosθsinθrsinθrcosθ=r

同理, J ( f , ϕ ) = ∣ c o s ϕ − f s i n ϕ s i n ϕ f c o s ϕ ∣ = f J(f,\phi)=\begin{vmatrix} cos\phi & -fsin\phi \\ sin\phi & fcos\phi \end{vmatrix}=f J(f,ϕ)=cosϕsinϕfsinϕfcosϕ=f

又由于
u x + v y = f c o s ϕ   r c o s θ + f s i n ϕ   r s i n θ = f r ( c o s ϕ c o s θ + s i n ϕ s i n θ ) = f r c o s ( ϕ − θ ) ux+vy=fcos\phi \space rcos\theta+fsin\phi \space rsin\theta \\=fr(cos\phi cos\theta+sin\phi sin\theta)=frcos(\phi-\theta) ux+vy=fcosϕ rcosθ+fsinϕ rsinθ=fr(cosϕcosθ+sinϕsinθ)=frcos(ϕθ)
可得

极坐标格式下的二维傅里叶变换为:
G ( f , ϕ ) = ∬ g ( r , θ ) e − j 2 π f r c o s ( ϕ − θ ) r d r d θ G(f,\phi)=\iint g(r,\theta)e^{-j2\pi frcos(\phi-\theta)}rdrd\theta G(f,ϕ)=g(r,θ)ej2πfrcos(ϕθ)rdrdθ
极坐标格式下的二维逆傅里叶变换为:
g ( r , θ ) = ∬ G ( f , ϕ ) e j 2 π f r c o s ( ϕ − θ ) f d f d ϕ g(r,\theta)=\iint G(f,\phi)e^{j2\pi frcos(\phi-\theta)}fdfd\phi g(r,θ)=G(f,ϕ)ej2πfrcos(ϕθ)fdfdϕ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值