基于Joint BERT模型的意图识别技术实践

介绍

意图识别在诸多领域已经有了非常广泛的应用,例如各个品牌的智能语音助手,如今多模态模型能力迅猛增长,与LLM交流方式变得多样化,为了给LLM提供高质量有价值的上下文嵌入信息,引入意图识别变得尤为重要,其不仅能够过滤掉大部分无用但又不得不加入pipline的工具,还可以极大优化整个pipline的响应时间以获得更好的用户体验。

意图识别类似分类任务,意图分类的方法包括CNN、LSTM、基于注意力的CNN、分层注意力网络、对抗性多任务学习。在调研时看到了JointBert论文。

模型架构

图片

CLS([CLS])是BERT模型中的一个特殊标记(special token),位于输入序列的第一个位置。CLS标记的主要作用是表示整个输入序列的类别。在训练BERT模型时,我们将输入序列的最后一个token传给分类层,这个token就是CLS标记。分类层将这个标记作为输入,输出一个代表序列类别的向量。这个向量在预测阶段被用来判断输入序列所属的类别。

SEP([SEP])是BERT模型中的另一个特殊标记,它位于输入序列的最后一个位置。SEP标记的主要作用是分隔不同的输入序列,使BERT模型能够同时处理多个输入序列。在训练和预测阶段,我们将不同的输入序列用SEP标记分隔开,使BERT模型能够正确地处理它们。

Joint BERT模型基于BERT的架构,利用其强大的双向上下文表示能力。它通过在BERT的基础上进行简单的微调(fine-tuning),来同时处理意图分类和槽位填充任务。Joint BERT模型通过使用BERT的隐藏状态来同时预测意图和填充槽位。具体来说,它使用特殊标记[CLS]的第一个隐藏状态来预测意图,而其他标记的最终隐藏状态则用于通过softmax层分类槽位填充标签。Joint BERT模型的优化目标是最大化条件概率p(yi, ys|x),即给定输入x时,意图yi和槽位序列ys的联合概率。这通过最小化交叉熵损失来实现端到端的微调。为了改进槽位填充性能,论文中还探讨了在Joint BERT模型之上添加条件随机场(CRF)层的效果。CRF可以帮助模型学习槽位标签之间的依赖关系,从而提高槽位填充的准确性。

最佳实践

基础环境

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值