大模型在各行各业的真实落地情况,是各企业持续关注的议题。数势科技数据智能大模型产品总经理岑润哲从金融行业痛点研究出发,结合深度案例分享数势科技产品如何有效结合大模型能力,帮助金融机构解决营销问题,真正实现差异化的精准营销。
01 金融行业运营痛点
随着金融行业渠道获客成本日趋增长、行业竞争导致客户流失率加大,目前我国金融市场已经进入存量时代,为存量客户池提供精细化的服务体系是当务之急,盘活、促进存量客户的活跃度至关重要。
岑润哲在分享中提到,在存量客户经营的过程中注册开户率、有效户率、人均AUM、流失率和召回率是需要重点关注的五大关键因子,而金融机构在优化这五大因子过程中往往面临挑战,譬如如何精准识别客户需求?如何高效分析客户痛点?如何围绕客户旅程差异化经营客户?
事实上,金融机构希望做更加精细化的客群运营,需要一整套数字化营销工具,通过大数据能力全面提升服务、转账、消费与行为画像丰富度,也需要通过完善线上线下全渠道、融合的策略体系,为企业提供全链路策略监控与洞察能力,进而提升老客单客价值。
具体怎么实现呢?通常来说,金融机构的精细化运营一般分为四步落地执行:构建客户画像与分群、客户经营策略设计、多渠道融合策略执行和策略评估与迭代,希望能够解决从事前客群分析、事中策略设计与执行到事后复盘的多重痛点。
然而,在真正的落地实践中数势科技发现,各业务团队拥有充分的业务认知,但往往缺少数据分析和解读能力,最本质的问题是人才组织不完善,没有“既懂数据科学、又懂业务的人才”。在精细化运营过程中产生的各类过程数据、客户行为数据和最终的结果数据,并不能实时、精准地得到下探分析。
因此,数势科技将大模型能力引入到原有的数据智能产品矩阵中,如指标平台、多实体数据管理洞察平台和经营分析平台等产品组件,为金融机构提供不同业务场景下的AI Agent(智能体),让业务团队以自然语言交互完成数据分析、自动运营、个性化交互和数据解读,实现不同业务场景下的数智化经营,譬如为经营分析场景提供分析Copilot、为全渠道营销场景提供营销Copilot、为研报摘要生成和解读场景提供经营Copilot等。
02 某头部金融机构案例分享
在现场,岑润哲还为大家展示了北京某头部金融机构数字化运营平台+大模型解决方案实战案例。在合作之初,该机构为适应财富管理数字化升级需要规划建设用户运营平台,希望通过数字化来赋能业务的高速发展。为此,数势科技为其规划了两期项目建设计划。
第一步建设一整套数字化运营产品,通过数据管理洞察平台(CDP)和智能营销决策平台(MA),实现了客户的“可识别、可分析和可经营性”,支持向上赋能业务拓展;
第二步在运营产品中引入大模型能力,增强平台产品的可用性和落地性。具体来说,首先数势科技基于自然语言的分析Copilot,解决事前洞察分析与事后数据的自助分析和解读;其次数势科技利用营销Copilot,帮助运营人员拆解营销策略要素,模拟业务人员设计策略的逻辑,进行prompt工程组装,实现营销策略的自动生成和执行;此外,还通过营销Copolit,数势科技帮助业务团队基于客户标签生成差异化文案,提升点击率。
最终,截至到项目交付,数势科技帮助该金融机构实现了增量AUM数十亿提升,成为跨越式发展新的增长动能。
03 大模型发展的待解决挑战
大模型是人工智能发展道路上尤为重要的技术,它为各领域业务创新和发展效率带来了显著提升,但大模型本身仍在不断发展中,我们应秉承实践原则和辩证思维,冷静地看待并不断地完善它。最后,岑润哲还分享了大模型在金融行业营销与决策分析落地的三大待解决挑战。
挑战1:国内大模型本身的问题。国内通用大模型蒸蒸日上,但是金融行业垂直大模型并没有突出者,相比国外GPT在数据分析等能力模块方面还有一定差距。
挑战2:私有化部署的问题。金融机构只接受私有化部署,但落地成本较高,这部分成本应有谁来承担?训练和推理的卡怎么买得到?......大模型上线后最终的目的是为了企业降本提效,对于一项新技术我们又将如何界定和判定ROI情况?
挑战3:大模型领域人才短缺。任何数字化建设问题都是人才与组织协同的问题,当前大模型领域人才短缺。
对于应用厂商来说,需要懂大模型的产品经理进行新一代产品功能的设计,那么是否有足够技术人才进行大模型微调、部署和应用开发?同样,对于金融机构而言,过去的人才画像是懂业务,随着大模型的发展和应用,未来需要懂大模型的人才进行大模型运维、使用与更新迭代。