文章目录
- 人工智能大模型原理与应用实战:大模型在金融风控中的应用0
- 人工智能大模型原理与应用实战:大模型在金融风控中的应用1
- 人工智能大模型原理与应用实战:大模型在金融风控中的应用2
- 1.背景介绍
- 2.核心概念与联系
- 3.核心算法原理和具体操作步骤以及数学模型公式详细讲解
- 4.具体代码实例和详细解释说明
- 5.未来发展与挑战
- 6.附录
人工智能大模型原理与应用实战:大模型在金融风控中的应用0
1. 背景介绍
1.1 金融风控的挑战
金融行业作为数据密集型行业,一直面临着各种风险,如信用风险、市场风险、操作风险等。传统的金融风控手段主要依赖于专家经验和规则引擎,难以应对日益复杂的金融市场和海量的交易数据。近年来,人工智能技术的快速发展为金融风控提供了新的解决方案,尤其是大模型的出现,为构建更加智能、高效的风控体系带来了新的机遇。
1.2 大模型的优势
大模型,如GPT、BERT等,在自然语言处理、计算机视觉等领域取得了突破性进展。相较于传统的机器学习模型,大模型具有以下优势:
- 更强的表征能力: 能够学习到数据中更复杂、更抽象的特征,提升模型的泛化能力。
- 更少的标注数据需求: 可以通过自监督学习的方式,利用海量的无标注数据进行预训练,降低对标注数据的依赖。
- 更好的可迁移性: 预训练好的大模型可以作为基础模型,应用于不同的下游任务,只需进行少量的微调即可。