【王道】最长递增子序列(LIS)最长公共子序列(LCS)

【思路】动态规划

【LIS】

#include<iostream>
#include<cstring>
#include<vector>
#include<math.h>
#include<algorithm>
#include<queue>
using namespace std;
#define maxi 0x3f3f3f3f
int str[100];
int k;
int dp[100];
int LIS()
{
	for (int i = 0; i < k; ++i)
	{
		for(int j=0;j<i;j++)
		{
			if(str[j]>=str[i])
			{
				dp[i]=max(dp[i],dp[j]+1);
			}
		}
		/* code */
	}
	int m=1;
	for(int i=0;i<k;i++)
		m=max(m,dp[i]);
	return m;
	

}
int main(int argc, char const *argv[])
{
	cin>>k;
	for(int i=0;i<k;i++)cin>>str[i];
	fill(dp,dp+100,1);
    cout<<LIS()<<endl;
	return 0;
}

【LCS】

dp[i][j]表示s1中前i个字符与s2中前j个字符分别组成的两个前桌字符串的最长公共子串长度。

#include<iostream>
#include<cstring>
#include<vector>
#include<math.h>
#include<algorithm>
#include<queue>
using namespace std;
#define maxi 0x3f3f3f3f
char str1[100];
char str2[100];
int dp[100][100];
int LCS()
{
	int l1=strlen(str1);
	int l2=strlen(str2);
	for(int i=0;i<l1;i++)dp[i][0]=0;
	for(int i=0;i<l2;i++)dp[0][i]=0;
	for(int i=1;i<=l1;i++)
		for (int j= 1; j<=l2; ++j)
		{
			if(str1[i-1]==str2[j-1])
				dp[i][j]=dp[i-1][j-1]+1;
			else
				dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
		}
	return dp[l1][l2];

}
int main(int argc, char const *argv[])
{
	cin>>str1>>str2;
    cout<<LCS()<<endl;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值