高等数学笔记:幂级数

繁星数学随想录·笔记卷

摘录卷

幂级数

〇、函数项级数的基本概念

01 函数项级数

u n ( x )   ( n = 1 , 2 , ⋯   ) u_{n}(x)\ (n=1,2, \cdots) un(x) (n=1,2,)​ 是定义在数集 X X X​ 上的函数列,称 ∑ n = 1 ∞ u n ( x ) \sum \limits_{\mathrm{n}=1}^{\infty} u_{n}(x) n=1un(x)​​ 为函数项级数

02 收敛点

∑ n = 1 ∞ u n ( x 0 ) \sum \limits_{\mathrm{n}=1}^{\infty} u_{n}\left(x_{0}\right) n=1un(x0)​ 收敛,称 x 0 x_{0} x0​ 是 ∑ n = 1 ∞ u n ( x ) \sum \limits_{n=1}^{\infty} u_{n}(x) n=1un(x)​​​ 的一个收敛点

03 发散点

∑ n = 1 ∞ u n ( x 0 ) \sum \limits_{\mathrm{n}=1}^{\infty} u_{n}\left(x_{0}\right) n=1un(x0)​ 发散,称 x 0 x_{0} x0​ 是 ∑ n = 1 ∞ u n ( x ) \sum \limits_{n=1}^{\infty} u_{n}(x) n=1un(x)​​​​ 的一个发散点

04 收敛域

∑ n = 1 ∞ u n ( x ) \sum \limits_{\mathrm{n}=1}^{\infty} u_{n}(x) n=1un(x)​ 的全体收敛点组成的集合 I I I​​ 称为它的收敛域

05 和函数

在收敛域的每个 x x x​ ,记 S ( x ) = ∑ n = 1 ∞ u n ( x ) S(x)=\sum \limits_{n=1}^{\infty} u_{n}(x) S(x)=n=1un(x)​ 称为 ∑ n = 1 ∞ u n ( x ) \sum \limits_{n=1}^{\infty} u_{n}(x) n=1un(x)​​ 的和函数

06 部分和(函数)

与数项级数类似, S n ( x ) = ∑ k = 1 n u k ( x ) S_{n}(x)=\sum \limits_{k=1}^{n} u_{k}(x) Sn(x)=k=1nuk(x) 称为 ∑ n = 1 ∞ u n ( x ) \sum \limits_{n=1}^{\infty} u_{n}(x) n=1un(x)​ 的部分和(函数)

07 部分和函数与和函数

在收敛域有 lim ⁡ n → ∞ S n ( x ) = S ( x )   ,   x ∈ I \lim \limits_{n \rightarrow \infty} S_{n}(x)=S(x)\ , \ x \in I nlimSn(x)=S(x) , xI​ .

08 函数项级数的余和

r n ( x ) = ∑ k = n + 1 ∞ u n ( x ) r_{n}(x)=\sum \limits_{k=n+1}^{\infty} u_{n}(x) rn(x)=k=n+1un(x)​ 称为函数项级数的余和,显然 lim ⁡ n → ∞ r n ( x ) = 0 \lim \limits_{n \rightarrow \infty} r_{n}(x)=0 nlimrn(x)=0​ .​​

一、幂级数的基本概念

01 泰勒级数

形如 ∑ n = 0 ∞ a n ( x − x 0 ) n = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + ⋯ + a n ( x − x 0 ) n + ⋯   ,   约 定 ( x − x 0 ) 0 = 1 \sum \limits_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots+a_{n}\left(x-x_{0}\right)^{n}+\cdots\ ,\ 约定 \left(x-x_{0}\right)^{0}=1 n=0an(xx0)n=a0+a1(xx0)+a2(xx0)2++an(xx0)n+ , (xx0)0=1

的函数项级数称为 ( x − x 0 ) (x-x_0) (xx0)幂级数或称为在 x = x 0 x=x_0 x=x0 处的泰勒级数, a 1 , a 2 , ⋯ a_1,a_2,\cdots a1,a2, 称为系数

注意 ∑ n = 0 ∞ a n ( x − x 0 ) n \sum \limits_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} n=0an(xx0)n x 0 x_0 x0 处为 a 0 a_0 a0 而非 0 0 0

02 麦克劳林级数

特别地,当 x 0 = 0 x_0=0 x0=0 时, ∑ n = 0 ∞ a n x n = a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n + ⋯   ,   约 定 x 0 = 1 \sum \limits_{n=0}^{\infty} a_{n}x^{n}=a_{0}+a_{1}x+a_{2}x^{2}+\cdots+a_{n}x^{n}+\cdots\ ,\ 约定 x^{0}=1 n=0anxn=a0+a1x+a2x2++anxn+ , x0=1

称为 x x x幂级数或称为在 x = 0 x=0 x=0 处的麦克劳林级数。

03 收敛半径

幂级数 ∑ n = 0 ∞ a n ( x − x 0 ) n \sum \limits_{n=0}^{\infty} a_{n} (x-x_0)^{n} n=0an(xx0)n收敛仅有三种可能情况

(1) 仅在 x = x 0 x=x_0 x=x0 收敛;

(2) 在以 x 0 x_0 x0 为中心的长度为 2 R 2 R 2R 的区间 ( x 0 − R , x 0 + R ) (x_0-R,x_0+R) (x0R,x0+R) 绝对收敛,而在 ∣ x − x 0 ∣ > R |x-x_0|>R xx0>R 发散;

(3) 在 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 收敛。

三种情况可看作是以 x 0 x_0 x0 为中心的区间,区间长度的一半称为收敛半径,记作 R R R

二、幂级数收敛半径的求法

01 阿贝尔定理

若幂级数 ∑ n = 0 ∞ a n x n \sum \limits_{n=0}^{\infty} a_{n} x^{n} n=0anxn x = x 0 x=x_{0} x=x0 收敛,则当 ∣ x ∣ < ∣ x 0 ∣ |x|<\left|x_{0}\right| x<x0,级数 ∑ n = 0 ∞ a n x n \sum \limits_{n=0}^{\infty} a_{n} x^{n} n=0anxn 绝对收敛;

若幂级数 ∑ n = 0 ∞ a n x n \sum \limits_{n=0}^{\infty} a_{n} x^{n} n=0anxn x = x 0 x=x_{0} x=x0 发散,则当 ∣ x ∣ > ∣ x 0 ∣ |x|>\left|x_{0}\right| x>x0,级数 ∑ n = 0 ∞ a n x n \sum \limits_{n=0}^{\infty} a_{n} x^{n} n=0anxn 发散。

02 柯西-阿达玛公式(比值法)

对幂级数 ∑ n = 0 ∞ a n ( x − x 0 ) n \sum \limits_{n=0}^{\infty} a_{n} (x-x_0)^{n} n=0an(xx0)n,若有
lim ⁡ n → ∞ ∣ a n a n + 1 ∣ = R    或    lim ⁡ n → ∞ ∣ a n + 1 a n ∣ = ρ (   ρ   可 以 是 + ∞ ) \lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=R \ \ 或 \ \ \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\rho \quad(\ \rho\ 可以是 +\infty) nliman+1an=R    nlimanan+1=ρ( ρ +)
则对该幂级数的收敛情况有:
( 1 )   0 < ρ < + ∞   ,   R = 1 ρ   ,   0 < R < + ∞ 幂 级 数 在   ( x 0 − R , x 0 + R )   内 绝 对 收 敛 , 幂 级 数 在   ( x 0 − R , x 0 + R )   内 绝 对 收 敛 , ( 2 )   ρ = + ∞   ,   R = 0 在   x 0 = x   处 收 敛 , 在   x 0 ≠ x   处 发 散 。 ( 3 )   ρ = 0   ,   R = + ∞ 幂 级 数 在   ( − ∞ , + ∞ )   内 绝 对 收 敛 。 \begin{aligned} & (1)\ 0<\rho<+\infty \ , \ R=\frac{1}{\rho} \ , \ 0<R<+\infty\\ & \quad\quad 幂级数在 \ (x_0-R,x_0+R) \ 内绝对收敛, \\ & \quad\quad 幂级数在 \ (x_0-R,x_0+R) \ 内绝对收敛, \\ & (2)\ \rho=+\infty \ , \ R=0\\ & \quad\quad 在\ x_0=x \ 处收敛,在\ x_0\neq x \ 处发散。 \\ & (3)\ \rho=0 \ , \ R=+\infty \\ & \quad\quad 幂级数在 \ (-\infty,+\infty) \ 内绝对收敛。 \end{aligned} (1) 0<ρ<+ , R=ρ1 , 0<R<+ (x0R,x0+R)  (x0R,x0+R) (2) ρ=+ , R=0 x0=x  x0=x (3) ρ=0 , R=+ (,+) 

03 根植法

对幂级数 ∑ n = 0 ∞ a n ( x − x 0 ) n \sum \limits_{n=0}^{\infty} a_{n} (x-x_0)^{n} n=0an(xx0)n,若有
lim ⁡ n → ∞ 1 ∣ a n ∣ n = R    或    lim ⁡ n → ∞ ∣ a n ∣ n = ρ (   ρ   可 以 是 + ∞ ) \lim _{n \rightarrow \infty}\frac{1}{\sqrt[n]{\left|a_{n}\right|}}=R \ \ 或 \ \ \lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\rho \quad(\ \rho\ 可以是 +\infty) nlimnan 1=R    nlimnan =ρ( ρ +)
则对该幂级数的收敛情况有:
( 1 )   0 < ρ < + ∞   ,   R = 1 ρ   ,   0 < R < + ∞ 幂 级 数 在   ( x 0 − R , x 0 + R )   内 绝 对 收 敛 , 幂 级 数 在   ( x 0 − R , x 0 + R )   内 绝 对 收 敛 , ( 2 )   ρ = + ∞   ,   R = 0 在   x 0 = x   处 收 敛 , 在   x 0 ≠ x   处 发 散 。 ( 3 )   ρ = 0   ,   R = + ∞ 幂 级 数 在   ( − ∞ , + ∞ )   内 绝 对 收 敛 。 \begin{aligned} & (1)\ 0<\rho<+\infty \ , \ R=\frac{1}{\rho} \ , \ 0<R<+\infty\\ & \quad\quad 幂级数在 \ (x_0-R,x_0+R) \ 内绝对收敛, \\ & \quad\quad 幂级数在 \ (x_0-R,x_0+R) \ 内绝对收敛, \\ & (2)\ \rho=+\infty \ , \ R=0\\ & \quad\quad 在\ x_0=x \ 处收敛,在\ x_0\neq x \ 处发散。 \\ & (3)\ \rho=0 \ , \ R=+\infty \\ & \quad\quad 幂级数在 \ (-\infty,+\infty) \ 内绝对收敛。 \end{aligned} (1) 0<ρ<+ , R=ρ1 , 0<R<+ (x0R,x0+R)  (x0R,x0+R) (2) ρ=+ , R=0 x0=x  x0=x (3) ρ=0 , R=+ (,+) 

三、幂级数的性质分析

01 收敛幂级数的性质
性质1(线性运算法则)

∑ n = 0 ∞ a n ( x − x 0 ) n \sum\limits_{n=0}^{\infty} a_{n}(x-x_0)^n n=0an(xx0)n,其收敛区间为 ( x 0 − R 1 , x 0 + R 1 )   ,   R 1 > 0 (x_0-R_1,x_0+R_1)\ , \ R_1>0 (x0R1,x0+R1) , R1>0

∑ n = 0 ∞ b n ( x − x 0 ) n \sum\limits_{n=0}^{\infty} b_{n}(x-x_0)^n n=0bn(xx0)n,其收敛区间为 ( x 0 − R 2 , x 0 + R 2 )   ,   R 2 > 0 (x_0-R_2,x_0+R_2)\ , \ R_2>0 (x0R2,x0+R2) , R2>0

∑ n = 0 ∞ [ α ⋅ a n + β ⋅ b n ] ( x − x 0 ) n = α ∑ n = 0 ∞ a n ( x − x 0 ) n + β ∑ n = 0 ∞ b n ( x − x 0 ) n   ( α , β   均 为 常 数 ) \sum\limits_{n=0}^{\infty} [\alpha\cdot a_{n}+\beta\cdot b_{n}](x-x_0)^n=\alpha\sum\limits_{n=0}^{\infty}a_n(x-x_0)^n+\beta\sum\limits_{n=0}^{\infty}b_n(x-x_0)^n\ (\alpha,\beta\ 均为常数) n=0[αan+βbn](xx0)n=αn=0an(xx0)n+βn=0bn(xx0)n (α,β )

其收敛区间为 ( x 0 − R , x 0 + R )   ,   R ⩾ min ⁡ { R 1 , R 2 } (x_0-R,x_0+R)\ , \ R\geqslant\min\left\{R_1,R_2\right\} (x0R,x0+R) , Rmin{R1,R2}

性质2(乘法运算法则)

∑ n = 0 ∞ a n ( x − x 0 ) n ⋅ ∑ n = 0 ∞ b n ( x − x 0 ) n = ∑ n = 0 ∞ c n ( x − x 0 ) n \sum\limits_{n=0}^{\infty}a_n(x-x_0)^n\cdot\sum\limits_{n=0}^{\infty}b_n(x-x_0)^n=\sum\limits_{n=0}^{\infty}c_n(x-x_0)^n n=0an(xx0)nn=0bn(xx0)n=n=0cn(xx0)n

其中 c n = ∑ i = 0 ∞ a i b n − i c_n=\sum\limits_{i=0}^{\infty}a_ib_{n-i} cn=i=0aibni,收敛半径是 R = min ⁡ { R 1 , R 2 } R=\min\left\{R_1,R_2\right\} R=min{R1,R2}

02 收敛区间上收敛幂级数的性质

以麦克劳林级数为例

性质1:连续性

若幂级数 ∑ n = 0 ∞ a n x n \sum \limits_{n=0}^{\infty} a_{n} x^{n} n=0anxn 的收敛半径为 R R R,则其和函数 S ( x ) S(x) S(x) ( − R , R ) (-R, R) (R,R) 内处处连续,

∀ x 0 ∈ ( − R , R ) \forall x_0\in(-R, R) x0(R,R) 时, lim ⁡ x → x 0 S ( x ) = S ( x 0 ) \lim \limits_{x \rightarrow x_0}S(x)=S(x_0) xx0limS(x)=S(x0) lim ⁡ x → x 0 ∑ n = 0 ∞ a n x n = ∑ n = 0 ∞ a n x 0 n = ∑ n = 0 ∞ lim ⁡ x → x 0 a n x n \lim \limits_{x \rightarrow x_0}\sum \limits_{n=0}^{\infty} a_{n} x^{n}=\sum \limits_{n=0}^{\infty} a_{n} x_0^{n}=\sum \limits_{n=0}^{\infty}\lim \limits_{x \rightarrow x_0}a_{n} x^{n} xx0limn=0anxn=n=0anx0n=n=0xx0limanxn

若级数在收敛域的端点 x = R x=R x=R (或 − R -R R ) 也收敛,则和函数 S ( x ) S(x) S(x) x = R x=R x=R (或 − R -R R ) 单侧连续。

一句话总结:和的极限等于极限的和。

性质2:可导性(逐项可导)

若幂级数 ∑ n = 0 ∞ a n x n \sum \limits_{n=0}^{\infty} a_{n} x^{n} n=0anxn 的收敛半径为 R R R,则其和函数 S ( x ) S(x) S(x) ( − R , R ) (-R, R) (R,R) 可导;且有:
d d x S ( x ) = ∑ n = 0 ∞ d d x ( a n x n ) = ∑ n = 1 ∞ n a n x n − 1 = S ′ ( x ) = ∑ n = 0 ∞ ( a n x n ) ′ = ∑ n = 1 ∞ n a n x n − 1 \begin{aligned} & \frac{d}{dx}S(x)=\sum_{n=0}^{\infty}\frac{d}{dx}(a_{n} x^{n})=\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\\ & S^{\prime}(x)=\sum_{n=0}^{\infty}\left(a_{n} x^{n}\right)^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}\\ \end{aligned} dxdS(x)=n=0dxd(anxn)=n=1nanxn1=S(x)=n=0(anxn)=n=1nanxn1
而级数 ∑ n = 1 ∞ n a n x n \sum \limits_{n=1}^{\infty} n a_{n} x^{n} n=1nanxn 的收敛区间仍为 ( − R , R ) (-R, R) (R,R),收敛半径仍为 R R R 。(更加精彩!
一句话总结:和的导数等于导数的和。

推论:逐项可导性的 k k k 阶导推广
d k d x k S ( x ) = ∑ n = 0 ∞ d k d x k ( a n x n ) = ∑ n = k ∞ n ( n − 1 ) ⋯ ( n − k + 1 ) ⋅ a n x n − k \frac{d^k}{dx^k}S(x)=\sum_{n=0}^{\infty}\frac{d^k}{dx^k}(a_{n} x^{n})=\sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1)\cdot a_{n} x^{n-k} dxkdkS(x)=n=0dxkdk(anxn)=n=kn(n1)(nk+1)anxnk

性质3:可积性(逐项可积)

若幂级数 ∑ n = 0 ∞ a n x n \sum \limits_{n=0}^{\infty} a_{n} x^{n} n=0anxn 的收敛半径为 R R R,则其和函数 S ( x ) S(x) S(x) ( − R , R ) (-R, R) (R,R) 内的任何区间可积;

且对 ∀ x ∈ ( − R , R ) \forall x\in(-R,R) x(R,R)
∫ 0 x S ( t ) d t = ∫ 0 x ∑ n = 0 ∞ a n t n d t = ∑ n = 0 ∞ ∫ 0 x a n t n d t = ∑ n = 0 ∞ a n n + 1 x n + 1 \int_{0}^{x} S(t) d t=\int_{0}^{x}\sum_{n=0}^{\infty} a_{n} t^{n} d t=\sum_{n=0}^{\infty} \int_{0}^{x} a_{n} t^{n} d t=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1} 0xS(t)dt=0xn=0antndt=n=00xantndt=n=0n+1anxn+1

推论:幂级数在收敛区间上任意次可积,且等于逐项积分,并有收敛区间不变。

性质补充(不常用)

[ a , b ] ⊂ ( − R , + R ) [a,b]\subset(-R,+R) [a,b](R,+R) ∫ a b S ( x ) d x = ∫ a b ∑ n = 0 ∞ a n x n d x = ∑ n = 0 ∞ a n ∫ a b x n d x = ∑ n = 0 ∞ a n n + 1 ( b n + 1 − a n + 1 ) \int_{a}^{b}S(x)dx=\int_{a}^{b}\sum\limits_{n=0}^{\infty} {a_nx^n}dx=\sum\limits_{n=0}^{\infty}a_n\int_{a}^{b} {x^n}dx=\sum\limits_{n=0}^{\infty}\frac{a_n}{n+1}(b^{n+1}-a^{n+1}) abS(x)dx=abn=0anxndx=n=0anabxndx=n=0n+1an(bn+1an+1) .

四、两个重要幂级数的分析

求下列幂级数的收敛半径、收敛区间、收敛域及和函数
1.   ∑ n = 0 ∞ x n n 2.   ∑ n = 0 ∞ n x n − 1 1.\ \sum \limits_{n=0}^{\infty} \frac{x^{n}}{n}\quad\quad\quad\quad\quad2. \ \sum \limits_{n=0}^{\infty}nx^{n-1} 1. n=0nxn2. n=0nxn1

五、函数展成幂级数

01 函数展成幂级数的直接展开

(1) 函数展成幂级数的直接展开推导

n n n 阶展开

f ( x ) f(x) f(x) x 0 x_0 x0 的某邻域内存在 ( n + 1 ) (n+1) (n+1) 阶导数,则 f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0 处可以展成 n n n 阶泰勒公式,即
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1   ,    ξ   介 于   x 0 , x   之 间 \begin{aligned} & f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2 !}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n}+R_{n}(x)\\ & R_{n}(x)=\frac{f^{(n+1)}\left(\xi\right)}{(n+1)!}\left(x-x_{0}\right)^{n+1} \ , \ \ \xi\ 介于\ x_0,x\ 之间 \end{aligned} f(x)=f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2++n!f(n)(x0)(xx0)n+Rn(x)Rn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1 ,  ξ  x0,x 
② 任意阶展开

f ( x ) f(x) f(x) x 0 x_0 x0 的某邻域内存在任意阶导数,上述泰勒公式对任意 n n n 的等式都成立,对其两边取极限
lim ⁡ n → ∞ f ( x ) = lim ⁡ n → ∞ [ f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) ] = lim ⁡ n → ∞ [   ( f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n ) + R n ( x )   ] \begin{aligned} & \lim \limits_{n \rightarrow \infty}f(x)=\lim \limits_{n \rightarrow \infty}[f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2 !}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n}+R_{n}(x)]\\ & \quad\quad =\lim \limits_{n \rightarrow \infty}[\ (f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2 !}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n})+R_{n}(x)\ ]\\ \end{aligned} nlimf(x)=nlim[f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2++n!f(n)(x0)(xx0)n+Rn(x)]=nlim[ (f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2++n!f(n)(x0)(xx0)n)+Rn(x) ]
③ 泰勒收敛

要求 lim ⁡ n → ∞ [ f ( x 0 ) + f ′ ( x 0 ) 1 ! ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n ] = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n \lim \limits_{n \rightarrow \infty}[f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1 !}\left(x-x_{0}\right)+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n}]=\sum\limits_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n} nlim[f(x0)+1!f(x0)(xx0)++n!f(n)(x0)(xx0)n]=n=0n!f(n)(x0)(xx0)n 极限存在即收敛

④ 余项收敛

求出 ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n \sum\limits_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n} n=0n!f(n)(x0)(xx0)n 的收敛区间 ( x 0 − R , x 0 + R ) (x_0-R,x_0+R) (x0R,x0+R),即 lim ⁡ n → ∞ P n ( x ) \lim \limits_{n \rightarrow \infty}P_n(x) nlimPn(x) 存在,

R n ( x ) = f ( x ) − P n ( x ) R_n(x)=f(x)-P_n(x) Rn(x)=f(x)Pn(x),当 x ∈ ( x 0 − R , x 0 + R ) x\in(x_0-R,x_0+R) x(x0R,x0+R) 时,可得 lim ⁡ n → ∞ R n ( x ) \lim \limits_{n \rightarrow \infty}R_n(x) nlimRn(x) 存在。

⑤ 余项表示

x ∈ ( x 0 − R , x 0 + R ) x\in(x_0-R,x_0+R) x(x0R,x0+R) 时, lim ⁡ n → ∞ R n ( x ) = lim ⁡ n → ∞ [ f ( x ) − P n ( x ) ] = f ( x ) − ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n \lim \limits_{n \rightarrow \infty}R_n(x)=\lim \limits_{n \rightarrow \infty}[f(x)-P_n(x)]=f(x)-\sum\limits_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n} nlimRn(x)=nlim[f(x)Pn(x)]=f(x)n=0n!f(n)(x0)(xx0)n

(2) 定理:函数与对应幂级数相等的充要条件

x ∈ ( x 0 − R , x 0 + R ) x\in(x_0-R,x_0+R) x(x0R,x0+R) 时, f ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n f(x)=\sum\limits_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n} f(x)=n=0n!f(n)(x0)(xx0)n充要条件 lim ⁡ n → ∞ R n ( x ) = 0 \lim \limits_{n \rightarrow \infty}R_n(x)=0 nlimRn(x)=0

说明 f ( x ) f(x) f(x) 并非总是等于它的泰勒级数。

(3) 将 f ( x ) f(x) f(x) 展成泰勒幂级数的步骤

① 求出 f ( n ) ( x 0 )   ,   n = 0 , 1 , 2 , ⋯ f^{(n)}(x_0)\ ,\ n=0,1,2,\cdots f(n)(x0) , n=0,1,2,

② 写出 f ( x ) f(x) f(x) 的泰勒级数, ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n \sum\limits_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n} n=0n!f(n)(x0)(xx0)n

③ 求出上述级数的收敛区间 ( x 0 − R , x 0 + R ) (x_0-R,x_0+R) (x0R,x0+R)

④ 验证当 x ∈ ( x 0 − R , x 0 + R ) x\in(x_0-R,x_0+R) x(x0R,x0+R) 时, lim ⁡ n → ∞ R n ( x ) = 0 \lim \limits_{n \rightarrow \infty}R_n(x)=0 nlimRn(x)=0

f ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n   ,   x ∈ ( x 0 − R , x 0 + R ) f(x)=\sum\limits_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n}\ ,\ x\in(x_0-R,x_0+R) f(x)=n=0n!f(n)(x0)(xx0)n , x(x0R,x0+R)

上述表达式称为将 f ( x ) f(x) f(x) 展成泰勒级数的直接展开。

特别地,当 x 0 = 0 x_0=0 x0=0 时,上述表达式称为将 f ( x ) f(x) f(x) 展成麦克劳林级数的直接展开。

(4) 将 f ( x ) f(x) f(x) 直接展成麦克劳林幂级数示例

  • f ( x ) = e x f(x)=e^x f(x)=ex 的麦克劳林级数展开
    e x = ∑ n = 0 ∞ x n n ! ,   x ∈ ( − ∞ , + ∞ ) e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n !}\quad , \ x\in(-\infty,+\infty) ex=n=0n!xn, x(,+)

  • f ( x ) = ( 1 + x ) α f(x)=(1+x)^{\alpha} f(x)=(1+x)α 的麦克劳林级数展开
    ( 1 + x ) α = 1 + ∑ n = 0 ∞ α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n ,   x ∈ ( − ∞ , + ∞ )   ,   ( α ≠ 0 , 常 数 ) (1+x)^{\alpha}=1+\sum_{n=0}^{\infty} \frac{\alpha(\alpha-1) \cdots (\alpha-n+1)}{n !} x^{n} \quad , \ x\in(-\infty,+\infty)\ , \ (\alpha\neq0,常数) (1+x)α=1+n=0n!α(α1)(αn+1)xn, x(,+) , (α=0)

  • f ( x ) = sin ⁡ x f(x)=\sin x f(x)=sinx 的麦克劳林级数展开
    sin ⁡ x = ∑ n = 0 ∞   ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! ,   x ∈ ( − ∞ , + ∞ ) \sin x =\sum_{n=0}^{\infty}\ (-1)^n\frac{x^{2n+1}}{(2n+1)!}\quad , \ x\in(-\infty,+\infty) sinx=n=0 (1)n(2n+1)!x2n+1, x(,+)

02 函数展成幂级数的间接展开

(1) 将 f ( x ) f(x) f(x) 直接展成麦克劳林幂级数示例

  • f ( x ) = cos ⁡ x f(x)=\cos x f(x)=cosx 的麦克劳林级数展开

    f ( x ) = sin ⁡ x f(x)=\sin x f(x)=sinx 的展开式两边求导
    cos ⁡ x = ∑ n = 0 ∞   ( − 1 ) n x 2 n ( 2 n ) ! ,   x ∈ ( − ∞ , + ∞ ) \cos x = \sum_{n=0}^{\infty}\ (-1)^n\frac{x^{2n}}{(2n)!}\quad , \ x\in(-\infty,+\infty) cosx=n=0 (1)n(2n)!x2n, x(,+)

  • f ( x ) = 1 1 − x f(x)=\frac{1}{1-x} f(x)=1x1 的麦克劳林级数展开

    将展开看作等比级数求和函数的逆运算
    1 1 − x = ∑ n = 0 ∞   x n ,   x ∈ ( − ∞ , + ∞ ) \frac{1}{1-x}=\sum_{n=0}^{\infty}\ x^n\quad , \ x\in(-\infty,+\infty) 1x1=n=0 xn, x(,+)

  • f ( x ) = 1 1 + x f(x)=\frac{1}{1+x} f(x)=1+x1 的麦克劳林级数展开

    将展开看作等比级数求和函数的逆运算
    1 1 + x = ∑ n = 0 ∞   ( − 1 ) n x n ,   x ∈ ( − ∞ , + ∞ ) \frac{1}{1+x}=\sum_{n=0}^{\infty}\ (-1)^n x^n\quad , \ x\in(-\infty,+\infty) 1+x1=n=0 (1)nxn, x(,+)

  • f ( x ) = ln ⁡ ( 1 + x ) f(x)=\ln{(1+x)} f(x)=ln(1+x) 的麦克劳林级数展开

    f ( x ) = 1 1 + x f(x)=\frac{1}{1+x} f(x)=1+x1 的展开式两边积分: ln ⁡ ( 1 + x ) = ∫ 0 x 1 1 + x d x \ln(1+x)=\int_{0}^{x}\frac{1}{1+x}dx ln(1+x)=0x1+x1dx
    ln ⁡ ( 1 + x ) = ∑ n = 0 ∞   ( − 1 ) n x n + 1 n + 1 ,   x ∈ ( − ∞ , + ∞ ) \ln(1+x)=\sum_{n=0}^{\infty}\ (-1)^n \frac{x^{n+1}}{n+1}\quad , \ x\in(-\infty,+\infty) ln(1+x)=n=0 (1)nn+1xn+1, x(,+)

03 函数展成幂级数的四大法宝

(1) 对 f ( x ) f(x) f(x) 用线性运算法则化成简单函数的线性组合。

(2) 变量代换

(3) 先对 f ( x ) f(x) f(x) 求导,将 f ′ ( x ) f'(x) f(x) 展开,再还原,两边积分⭐

​ 看到反三角函数首先想到求导,展开,再积分

(4) 先积分展开,再两边求导(用的不多)

大家掌握了把函数展成麦克劳林级数,如果要求 f ( x ) f(x) f(x) 展成 ( x − x 0 ) (x-x_0) (xx0) 的幂级数,

f ( x ) = ( x − x 0 = t ) = f ( x 0 + t ) = ∑ n = 0 ∞ a n t n = ∑ n = 0 ∞ a n ( x − x 0 ) n f(x)=(x-x_0=t)=f(x_0+t)=\sum\limits_{n=0}^{\infty} a_nt^n=\sum\limits_{n=0}^{\infty} a_n(x-x_0)^n f(x)=(xx0=t)=f(x0+t)=n=0antn=n=0an(xx0)n

04 函数幂级数唯一性定理

唯一性定理(函数的幂级数形式惟一):

S ( x ) = ∑ n = 0 ∞ a n ( x − x 0 ) n   ,   x 0 ∈ ( x 0 − δ , x 0 + δ ) ⊂ ( x 0 − R , x 0 + R )   ( δ > 0 ) S(x)=\sum\limits_{n=0}^{\infty} a_n(x-x_0)^n\ , \ x_0\in(x_0-\delta,x_0+\delta)\subset(x_0-R,x_0+R)\ (\delta>0) S(x)=n=0an(xx0)n , x0(x0δ,x0+δ)(x0R,x0+R) (δ>0),则必有
a n = S ( n ) ( x ) n ! n = 0 , 1 , 2 , ⋯ a_n=\frac{S^{(n)}(x)}{n!}\quad n=0,1,2,\cdots an=n!S(n)(x)n=0,1,2,
推论:

∑ n = 0 ∞ a n ( x − x 0 ) n = ∑ n = 0 ∞ b n ( x − x 0 ) n   ,   x 0 ∈ ( x 0 − δ , x 0 + δ )   ( δ > 0 ) \sum\limits_{n=0}^{\infty} a_n(x-x_0)^n=\sum\limits_{n=0}^{\infty} b_n(x-x_0)^n\ , \ x_0\in(x_0-\delta,x_0+\delta)\ (\delta>0) n=0an(xx0)n=n=0bn(xx0)n , x0(x0δ,x0+δ) (δ>0),则 a n = b n    ,    n = 0 , 1 , 2 , ⋯ a_n=b_n\ \ ,\ \ n=0,1,2,\cdots an=bn  ,  n=0,1,2,

五、常用初等函数的幂级数

常用初等函数的幂级数
( 1 )    e x = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ + x n n ! + ⋯ = ∑ n = 0 ∞ x n n !   ,   x ∈ ( − ∞ , + ∞ ) ( 2 )    sin ⁡ x = x − x 3 3 ! + x 5 5 ! − ⋯ + ( − 1 ) n − 1 x 2 n − 1 ( 2 n − 1 ) ! + ⋯   ,   x ∈ ( − ∞ , + ∞ ) ( 3 )    cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! − ⋯ + ( − 1 ) n x 2 n ( 2 n ) ! + ⋯   ,   x ∈ ( − ∞ , + ∞ ) ( 4 )    ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 − x 4 4 + ⋯   ,   x ∈ ( − ∞ , + ∞ ) ( 5 )    ( 1 + x ) m = 1 + m x + m ( m − 1 ) 2 ! x 2 + ⋯ + m ( m − 1 ) ⋯ ( m − n + 1 ) n ! x n + ⋯   ,   x ∈ ( − ∞ , + ∞ ) \begin{aligned} &(1)\ \ e^{x}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+ \cdots +\frac{x^{n}}{n !}+ \cdots =\sum_{n=0}^{\infty} \frac{x^{n}}{n !}\quad \ , \ x\in(-\infty,+\infty)\\ &(2)\ \ \sin x=x-\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}- \cdots +(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1) !}+ \cdots \quad \ , \ x\in(-\infty,+\infty)\\ &(3)\ \ \cos x=1-\frac{x^{2}}{2 !}+\frac{x^{4}}{4 !}- \cdots +(-1)^{n} \frac{x^{2 n}}{(2 n) !}+ \cdots \quad \ , \ x\in(-\infty,+\infty)\\ &(4)\ \ \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+ \cdots \quad \ , \ x\in(-\infty,+\infty)\\ &(5)\ \ (1+x)^{m}=1+m x+\frac{m(m-1)}{2 !} x^{2}+ \cdots +\frac{m(m-1) \cdots (m-n+1)}{n !} x^{n}+ \cdots \quad \ , \ x\in(-\infty,+\infty)\\ \end{aligned} (1)  ex=1+x+2!x2+3!x3++n!xn+=n=0n!xn , x(,+)(2)  sinx=x3!x3+5!x5+(1)n1(2n1)!x2n1+ , x(,+)(3)  cosx=12!x2+4!x4+(1)n(2n)!x2n+ , x(,+)(4)  ln(1+x)=x2x2+3x34x4+ , x(,+)(5)  (1+x)m=1+mx+2!m(m1)x2++n!m(m1)(mn+1)xn+ , x(,+)
利用以上幂级数展开式可求其他一些初等函数的幂级数展开式。

六、幂级数的应用举例

  • 近似计算

    • 计算 π \pi π 的近似值
  • 计算积分

    • 计算积分 ∫ 0 1 e x − 1 x d x \int_{0}^{1} \frac{e^{x}-1}{x} d x 01xex1dx
  • 利用幂级数推导欧拉公式

    • 利用幂级数,可以推出欧拉公式 e i x = cos ⁡ x + i sin ⁡ x e^{i x}=\cos x+i \sin x eix=cosx+isinx
    • x = π x=\pi x=π e i π = − 1 ⇒ e i π + 1 = 0 ( 数 学 中 最 美 的 等 式 ) e^{i \pi}=-1 \Rightarrow e^{i \pi}+1=0\quad(数学中最美的等式) eiπ=1eiπ+1=0()
  • 10
    点赞
  • 46
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值