高数考研归纳 - 级数 - 幂级数

点击此处查看高数其他板块总结

文章目录

记忆内容

1 基本概念

(1) 函数项级数 -   ∑ n = 1 ∞ u n ( x )   \,\sum\limits_{n=1}^\infty u_n(x)\, n=1un(x)

  定义
    设   { u n ( x ) }   \,\{u_n(x)\}\, {un(x)}为函数列,称   ∑ n = 1 ∞ u n ( x )   \,\sum\limits_{n=1}^\infty u_n(x)\, n=1un(x)为函数项级数.
∑ n = 1 ∞ u n ( x ) = u 1 ( x ) + u 2 ( x ) + u 3 ( x ) + . . . + u n ( x ) + . . . \sum\limits_{n=1}^\infty u_n(x)=u_1(x)+u_2(x)+u_3(x)+...+u_n(x)+... n=1un(x)=u1(x)+u2(x)+u3(x)+...+un(x)+...

    注意:当   x = x 0   \,x=x_0\, x=x0时,   ∑ n = 1 ∞ u n ( x 0 )   \,\sum\limits_{n=1}^\infty u_n(x_0)\, n=1un(x0)常数项级数.

  收敛点 / 发散点:若常数项级数   ∑ n = 1 ∞ u n ( x 0 )   \,\sum\limits_{n=1}^\infty u_n(x_0)\, n=1un(x0)收敛(发散),则称   x 0   \,x_0\, x0是函数项级数   ∑ n = 1 ∞ u n ( x 0 )   \,\sum\limits_{n=1}^\infty u_n(x_0)\, n=1un(x0)的收敛点(发散点).

  收敛域 / 发散域:函数项级数   ∑ n = 1 ∞ u n ( x )   \,\sum\limits_{n=1}^\infty u_n(x)\, n=1un(x)收敛点(发散点)的全体.

  收敛区间:不含端点的收敛域: ( − R ,   R ) (-R,\,R) (R,R).

  部分和 - s n ( x ) s_n(x) sn(x)
    即 ∑ n = 1 ∞ u n ( x )   \sum\limits_{n=1}^\infty u_n(x)\, n=1un(x)的前   n   \,n\, n项之和.
s n ( x ) = u 1 ( x ) + u 2 ( x ) + u 3 ( x ) + . . . + u n ( x ) s_n(x)=u_1(x)+u_2(x)+u_3(x)+...+u_n(x) sn(x)=u1(x)+u2(x)+u3(x)+...+un(x)

  和函数 - s ( x ) s(x) s(x)
s ( x ) = u 1 ( x ) + u 2 ( x ) + u 3 ( x ) + . . . + u n ( x ) + . . . s(x)=u_1(x)+u_2(x)+u_3(x)+...+u_n(x)+... s(x)=u1(x)+u2(x)+u3(x)+...+un(x)+...

  部分和与和函数的关系
lim ⁡ n → ∞ s n ( x ) = s ( x ) \lim\limits_{n\to\infty}s_n(x)=s(x) nlimsn(x)=s(x)

  余项 - r n ( x ) r_n(x) rn(x)
r n ( x ) = s ( x ) − s n ( x ) r_n(x)=s(x)-s_n(x) rn(x)=s(x)sn(x)

lim ⁡ n → ∞ r n ( x ) = 0 \lim\limits_{n\to\infty}r_n(x)=0 nlimrn(x)=0

    注意:只有   x   \,x\, x在收敛域上,   r n ( x )   \,r_n(x)\, rn(x)才有意义.

(2) 幂级数 -   ∑ n = 0 ∞ a n x n   \,\sum\limits_{n=0}^\infty a_n x^n\, n=0anxn

  定义
    幂级数是具有以下形式的函数项级数
∑ n = 0 ∞ a n x n = a 0 + a 1 x + a 2 x 2 + . . . + a n x n + . . . \sum\limits_{n=0}^\infty a_n x^n=a_0+a_1x+a_2x^2+...+a_nx^n+... n=0anxn=a0+a1x+a2x2+...+anxn+...

    注意
      (1) ∑ n = 0 ∞ a n ( x − x 0 ) n   \sum\limits_{n=0}^\infty a_n(x-x_0)^n\, n=0an(xx0)n是幂级数的一般形式,但可以作代换   t = x − x 0   \,t=x-x_0\, t=xx0化为上面的标准形式. 题目出现这种形式时也是考虑先代换,转化为   ∑ n = 0 ∞ a n x n   \,\sum\limits_{n=0}^\infty a_n x^n\, n=0anxn.
      (2) a 0 ,   a 1 ,   a 2 , . . . , a n , . . .   a_0,\,a_1,\,a_2,...,a_n,...\, a0,a1,a2,...,an,...称为幂级数的系数.
      (3) 泰勒公式的级数形式:
f ( x ) = ∑ n = 0 ∞ a n ( x − x 0 ) n f(x)=\sum\limits_{n=0}^\infty a_n(x-x_0)^n f(x)=n=0an(xx0)n

2 幂级数基本定理

(一) 阿贝尔定理 ( Abel \text{Abel} Abel)

  对幂级数   ∑ n = 0 ∞ a n x n   \,\sum\limits_{n=0}^\infty a_n x^n\, n=0anxn
    a) 若存在   x 0 ≠ 0 \,x_0\neq 0 x0=0,使得   ∑ n = 0 ∞ a n x 0 n   \,\sum\limits_{n=0}^\infty a_n x_0^n\, n=0anx0n收敛,则当   ∣ x ∣ < ∣ x 0 ∣   \,|x|<|x_0|\, x<x0时,   ∑ n = 0 ∞ a n x n   \,\sum\limits_{n=0}^\infty a_n x^n\, n=0anxn绝对收敛
    b) 若存在   x 1 ≠ 0 \,x_1\neq 0 x1=0,使得   ∑ n = 0 ∞ a n x 1 n   \,\sum\limits_{n=0}^\infty a_n x_1^n\, n=0anx1n发散,则当   ∣ x ∣ > ∣ x 1 ∣   \,|x|>|x_1|\, x>x1时,   ∑ n = 0 ∞ a n x n   \,\sum\limits_{n=0}^\infty a_n x^n\, n=0anxn发散;

   !   \color{Red}!\, !推论
    对幂级数   ∑ n = 0 ∞ a n x n   \,\sum\limits_{n=0}^\infty a_n x^n\, n=0anxn ∃   R > 0   \exist\,R>0\, R>0( R   R\, R称为收敛半径),
        a)    ∣ x ∣ < R   \;|x|<R\, x<R   x ∈ ( − R , R ) \,\color{Blue}x\in(-R,R) x(R,R),幂级数绝对收敛
        b)    ∣ x ∣ > R   \;|x|>R\, x>R   x < − R   \,\color{Blue}x<-R\, x<R   x > R \,\color{Blue}x>R x>R,幂级数发散
        c)    x = ± R   \;\color{Blue}x=\pm R\, x=±R,幂级数可能收敛也可能发散.

  注意
    (1) 由此可见,幂级数的条件收敛只有可能发生在端点.
    (2) 端点处是否属于收敛域需要单独考虑,通过判断将端点代入幂级数得到的常数项级数的敛散性确定.

(二) 收敛半径定理和相关问题

  通过下面两个定理可以确定收敛半径   R \,R R.

定理1

  对幂级数   ∑ n = 0 ∞ a n x n \,\sum\limits_{n=0}^\infty a_n x^n n=0anxn,设   lim ⁡ n → ∞ ∣ a n + 1 a n ∣ = ρ \,\color{Blue}\lim\limits_{n\to\infty}|\frac{a_{n+1}}{a_{n}}|=\rho nlimanan+1=ρ,则
    (1) 若   ρ = 0 \,\rho=0 ρ=0,则   R = + ∞ \,R=+\infty R=+

    (2) 若   ρ = + ∞ \,\rho=+\infty ρ=+,则   R = 0   \,R=0\, R=0

    (3) 若   0 < ρ < + ∞ \,0<\rho<+\infty 0<ρ<+,则   R = 1 ρ \,R=\frac{1}{\rho} R=ρ1.

定理2

  对幂级数   ∑ n = 0 ∞ a n x n \,\sum\limits_{n=0}^\infty a_n x^n n=0anxn,设   lim ⁡ n → ∞ ∣ a n ∣ n = ρ \,\color{Blue}\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}=\rho nlimnan =ρ,则
    (1) 若   ρ = 0 \,\rho=0 ρ=0,则   R = + ∞ \,R=+\infty R=+

    (2) 若   ρ = + ∞ \,\rho=+\infty ρ=+,则   R = 0   \,R=0\, R=0

    (3) 若   0 < ρ < + ∞ \,0<\rho<+\infty 0<ρ<+,则   R = 1 ρ \,R=\frac{1}{\rho} R=ρ1.

补充说明

  (1) 若幂级数表示为   ∑ n = 0 ∞ a n x k n + c    ( k > 0 , c ⩾ 0 ) \,\sum\limits_{n=0}^\infty a_n x^{{\color{Red}k}n+c}\;(k>0,c\geqslant0) n=0anxkn+c(k>0,c0),其收敛半径为   R ′ \,R' R,则
1 R = lim ⁡ n → ∞ ∣ a n + 1 a n ∣ = ρ ⇒ R ′ = R k = 1 ρ k \frac{1}{R}=\lim\limits_{n\to\infty}\bigg|\frac{a_{n+1}}{a_{n}}\bigg|=\rho\Rightarrow R'=\sqrt[\color{Red}k]{R}=\sqrt[\color{Red}k]{\frac{1}{\rho}} R1=nlimanan+1=ρR=kR =kρ1

1 R = lim ⁡ n → ∞ ∣ a n ∣ n = ρ ⇒ R ′ = R k = 1 ρ k \frac{1}{R}=\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}=\rho\Rightarrow R'=\sqrt[\color{Red}k]{R}=\sqrt[\color{Red}k]{\frac{1}{\rho}} R1=nlimnan =ρR=kR =kρ1

  (2) 对于幂级数   ∑ n = 0 ∞ a n ( x − x 0 ) n \,\sum\limits_{n=0}^\infty a_n (x-x_0)^n n=0an(xx0)n,其收敛域是以   x 0   \,x_0\, x0为中心且包含   ( x 0 − R ,   x 0 + R )   \,(x_0-R,\,x_0+R)\, (x0R,x0+R)的区间 (端点情况单独考虑).

  (3) 在幂级数中, ( − 1 ) n   (-1)^n\, (1)n是包含在   a n   \,a_n\, an中的 (这与交错级数不同),计算收敛半径时不要漏掉.

问题1. 求收敛域

  标准步骤
    (1) 求收敛半径,得到收敛区间 (开区间).
    (2) 判断端点敛散性,得到收敛域.

  如果对收敛区间分析感到困难,可以考虑使用下面这种方法:
  收敛区间快速求法
    (1) 对于   ∑ u n ( x ) \,\sum u_n(x) un(x),加绝对值使之成为正项级数   ∑ ∣ u n ( x ) ∣ \,\sum|u_n(x)| un(x).
    (2) 使用比值审敛法(或根值审敛法),令: { lim ⁡ n → ∞ ∣ u n + 1 ( x ) ∣ ∣ u n ( x ) ∣ < 1 lim ⁡ n → ∞ ∣ u n ( x ) ∣ n < 1 , \begin{cases}\lim\limits_{n\to\infty}\frac{|u_{n+1}(x)|}{|u_n{(x)}|}<1\\ \lim\limits_{n\to\infty}\sqrt[n]{|u_n(x)|}<1\end{cases}, nlimun(x)un+1(x)<1nlimnun(x) <1      解出   x   \,x\, x的范围,即为收敛区间.

  细节问题:对于(1),收敛半径通常对级数直接使用收敛半径定理即可解得. 但有时级数比较复杂,定理1、定理2计算不出. 应该考虑能否对级数进行拆分,分别考虑最后再取交集. 下面给出其中一种非常重要的拆分思路:
    奇偶拆分
      以求   ∑ n = 1 ∞ [ 3 + ( − 1 ) n ] n n x n   \,\sum\limits_{n=1}^{\infty}\frac{[3+(-1)^n]^n}{n}x^n\, n=1n[3+(1)n]nxn的收敛区间为例:
∑ n = 1 ∞ [ 3 + ( − 1 ) n ] n n x n = ∑ n = 1 ∞ 4 2 n 2 n x 2 n + ∑ n = 1 ∞ 2 2 n − 1 2 n − 1 x 2 n − 1 \sum\limits_{n=1}^{\infty}\frac{[3+(-1)^n]^n}{n}x^n=\sum\limits_{n=1}^{\infty}\frac{4^{2n}}{2n}x^{2n}+\sum\limits_{n=1}^{\infty}\frac{2^{2n-1}}{2n-1}x^{2n-1} n=1n[3+(1)n]nxn=n=12n42nx2n+n=12n122n1x2n1

∑ n = 1 ∞ 4 2 n 2 n x 2 n ⇒ ( − 1 2 ,   1 2 ) \sum\limits_{n=1}^{\infty}\frac{4^{2n}}{2n}x^{2n}\Rightarrow(-\frac{1}{2},\,\frac{1}{2}) n=12n42nx2n(21,21)

∑ n = 1 ∞ 2 2 n − 1 2 n − 1 x 2 n − 1 ⇒ ( − 1 4 ,   1 4 ) \sum\limits_{n=1}^{\infty}\frac{2^{2n-1}}{2n-1}x^{2n-1}\Rightarrow(-\frac{1}{4},\,\frac{1}{4}) n=12n122n1x2n1(41,41)

⇒ ( − 1 4 ,   1 4 ) \Rightarrow (-\frac{1}{4},\,\frac{1}{4}) (41,41)

  读者可以再考虑:   ∑ n = 1 ∞ 2 + ( − 1 ) n n x n \,\sum\limits_{n=1}^{\infty}\frac{2+(-1)^n}{n}x^n n=1n2+(1)nxn.

问题2. 根据收敛点或发散点判断收敛域

  对于幂级数:
∑ n = 0 ∞ a n ⋅ x n \sum\limits_{n=0}^{\infty}a_n\cdot x^n n=0anxn

  首先明确一个事实:收敛区间必定关于   x = 0   \,x=0\, x=0中心对称,必定以   ( − R , R )   \,(-R,R)\, (R,R)   ( − ∞ , + ∞ )   \,(-\infty,+\infty)\, (,+)二者之一的形式出现.

  有以下几个的结论:
  (1) 若已知该幂级数在   x = x 1   \,x=x_1\, x=x1收敛,说明:
    至少   ( − x 1 ,   x 1 ]   \,(-x_1,\,x_1]\, (x1,x1]这个区间内幂级数是收敛的;
    在区间   ( − x 1 − Δ x , x 1 + Δ x )   \,(-x_1-\Delta x,x_1+\Delta x)\, (x1Δx,x1+Δx)内幂级数可能还收敛;
     x = − x 1   x=-x_1\, x=x1是否收敛不能确定.
       R ⩾ x 1 \,R\geqslant x_1 Rx1

  (2) 若该幂级数在   x = x 2   \,x=x_2\, x=x2发散,说明:
    至多   [ − x 2 ,   x 2 )   \,[-x_2,\,x_2)\, [x2,x2)这个区间内幂级数是收敛的;
    在区间   ( − x 2 + Δ x , x 2 − Δ x )   \,(-x_2+\Delta x,x_2-\Delta x)\, (x2+Δx,x2Δx)内幂级数可能还发散;
     x = − x 2   x=-x_2\, x=x2是否收敛不能确定.
       R ⩽ x 2 \,R\leqslant x_2 Rx2

  而对于幂级数:
∑ n = 0 ∞ a n ⋅ ( x − x 0 ) n \sum\limits_{n=0}^{\infty}a_n\cdot (x-x_0)^n n=0an(xx0)n

    首先作代换,令   t = x − x 0 ⇒ x = t + x 0 \,t=x-x_0\Rightarrow x=t+x_0 t=xx0x=t+x0.
    则收敛域必然关于   t = 0   \,t=0\, t=0对称,问题就转化为   ∑ n = 0 ∞ a n ⋅ t n   \,\sum\limits_{n=0}^{\infty}a_n\cdot t^n\, n=0antn的收敛半径问题了.

  更一般的,下面这种级数的收敛半径也能判断:
∑ n = 0 ∞ a n ⋅ ( a x + b ) n      ( a ≠ 0 ) \sum\limits_{n=0}^{\infty}a_n\cdot (ax+b)^n\;\;(a\neq 0) n=0an(ax+b)n(a=0)

    令   t = a x + b \,t=ax+b t=ax+b,即可进行判断.

  例. 设级数   ∑ n = 0 ∞ a n ( 2 x − 1 ) n   \,\sum\limits_{n=0}^{\infty}a_n(2x-1)^n\, n=0an(2x1)n   x = − 2   \,x=-2\, x=2处收敛,在   x = 3   \,x=3\, x=3处发散,求收敛半径.

  解.
    令   t = 2 x − 1 \,t=2x-1 t=2x1,则有   ∑ n = 0 ∞ a n t n   \,\sum\limits_{n=0}^{\infty}a_nt^n\, n=0antn收敛区间关于原点对称.
    因为级数在   x = − 2   \,x=-2\, x=2处收敛,即   t = − 5   \,t=-5\, t=5处收敛,所以   R ⩾ 5 \,R\geqslant5 R5
    因为级数在   x = 3   \,x=3\, x=3处发散,即   t = 5   \,t=5\, t=5处发散,所以   R ⩽ 5 \,R\leqslant5 R5
    综上: R = 5 R=5 R=5.

问题3. 根据幂级数的收敛半径推另一个幂级数的收敛半径

  已知收敛半径为   R   \,R\, R的幂级数:
∑ n = 0 ∞ a n ⋅ x n \sum\limits_{n=0}^{\infty}a_n\cdot x^n n=0anxn

  主要有两种思路

    (1) 使用逐项可积性逐项可导性(见幂级数的分析性质),收敛半径不变. 即这三者收敛半径都为   R   \,R\, R
∑ n = 0 ∞ a n ⋅ x n , ∑ n = 0 ∞ n a n x n − 1 , ∑ n = 0 ∞ a n n + 1 x n + 1 \sum\limits_{n=0}^{\infty}a_n\cdot x^n,\sum\limits_{n=0}^\infty na_n x^{n-1},\sum\limits_{n=0}^\infty \frac{a_n}{n+1}x^{n+1} n=0anxnn=0nanxn1n=0n+1anxn+1

    (2) 另一个幂级数为   ∑ n = 0 ∞ a n x k n + c    ( k > 0 , c ⩾ 0 ) \,\sum\limits_{n=0}^\infty a_n x^{{\color{Red}k}n+c}\;(k>0,c\geqslant0) n=0anxkn+c(k>0,c0),收敛半径为   R ′ \,R' R,则:

1 R = lim ⁡ n → ∞ ∣ a n + 1 a n ∣ = ρ ⇒ R ′ = R k = 1 ρ k \frac{1}{R}=\lim\limits_{n\to\infty}\bigg|\frac{a_{n+1}}{a_{n}}\bigg|=\rho\Rightarrow R'=\sqrt[\color{Red}k]{R}=\sqrt[\color{Red}k]{\frac{1}{\rho}} R1=nlimanan+1=ρR=kR =kρ1

      或
1 R = lim ⁡ n → ∞ ∣ a n ∣ n = ρ ⇒ R ′ = R k = 1 ρ k \frac{1}{R}=\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}=\rho\Rightarrow R'=\sqrt[\color{Red}k]{R}=\sqrt[\color{Red}k]{\frac{1}{\rho}} R1=nlimnan =ρR=kR =kρ1

3 幂级数的分析性质

(1) 连续性质

  和函数   s ( x )   \,s(x)\, s(x)   ( − R , R )   \,(-R,R)\, (R,R)内连续.

(2) 逐项可导性

  当   x ∈ ( − R , R )   \,x\in(-R,R)\, x(R,R)时,
s ′ ( x ) = ( ∑ n = 0 ∞ a n x n ) ′ = ∑ n = 0 ∞ n a n x n − 1 s'(x)=(\sum\limits_{n=0}^\infty a_n x^n)'=\sum\limits_{n=0}^\infty na_n x^{n-1} s(x)=(n=0anxn)=n=0nanxn1

  且   ∑ n = 0 ∞ n a n x n − 1   \,\sum\limits_{n=0}^\infty na_n x^{n-1}\, n=0nanxn1的收敛半径也是   R \,R R.

    注意
      (1) 逐项求导不改变收敛半径,但收敛域可能变大,也可能缩小(视求导后端点处的敛散性而定).
      (2) 反复使用逐项可导性可以得出:和函数   s ( x )   \,s(x)\, s(x)   ( − R , R )   \,(-R,R)\, (R,R)内具有任意阶导数.

(3) 逐项可积性

  当   x ∈ ( − R , R )   \,x\in(-R,R)\, x(R,R)时,
∫ 0 x s ( x ) d x = ∫ 0 x ( ∑ n = 0 ∞ a n x n ) d x = ∑ n = 0 ∞ ∫ 0 x a n x n d x = ∑ n = 0 ∞ a n n + 1 x n + 1 \int^x_0s(x)\text{d}x=\int^x_0(\sum\limits_{n=0}^\infty a_n x^n)\text{d}x=\sum\limits_{n=0}^\infty\int_0^x a_n x^n\text{d}x=\sum\limits_{n=0}^\infty \frac{a_n}{n+1}x^{n+1} 0xs(x)dx=0x(n=0anxn)dx=n=00xanxndx=n=0n+1anxn+1

  且   ∑ n = 0 ∞ a n n + 1 x n + 1   \,\sum\limits_{n=0}^\infty \frac{a_n}{n+1}x^{n+1}\, n=0n+1anxn+1的收敛半径也是   R \,R R.

    注意:逐项求积分不改变收敛半径,但收敛域可能变大,也可能缩小(视求积分后端点处的敛散性而定).

(4) 变换与拆项

下标增减变换

  技巧:下标和通项中的   n   \,n\, n变化是相反的,
      下标减多少,通项就加多少;下标加多少,通项就减多少.

  通用思路:换元法,下面看两个例子:

  (1) 将下标   i   \,i\, i变成从   0   \,0\, 0开始:
∑ n = i ∞ x n = ∑ n = 0 ∞ x n + i \sum\limits_{n=\color{Blue}i}^\infty x^{\color{Purple}n}=\sum\limits_{n=\color{Blue}0}^\infty x^{\color{Purple}n+i} n=ixn=n=0xn+i

∑ n = i ∞ x 2 n + c = ∑ n = 0 ∞ x 2 ( n + i ) + c \sum\limits_{n=\color{Blue}i}^\infty x^{\color{Purple}2n+c}=\sum\limits_{n=\color{Blue}0}^\infty x^{\color{Purple}2(n+i)+c} n=ix2n+c=n=0x2(n+i)+c

  推导:令   t = n − i   \,t=n-i\, t=ni,则   n = i + t   \,n=i+t\, n=i+t
∑ n = i ∞ x n = ∑ t = 0 ∞ x i + t = ∑ n = 0 ∞ x n + i \sum\limits_{n=\color{Blue}i}^\infty x^n=\sum\limits_{t=\color{Blue}0}^\infty x^{i+t} =\sum\limits_{n=\color{Blue}0}^\infty x^{n+i} n=ixn=t=0xi+t=n=0xn+i

  (2) 将次数   n + i   \,n+i\, n+i改为   n   \,n\, n
∑ n = k ∞ x n + i = ∑ n = k + i ∞ x n \sum\limits_{n=\color{Purple}k}^\infty x^{\color{Blue}n+i}=\sum\limits_{n=\color{Purple}k+i}^\infty x^{\color{Blue}n} n=kxn+i=n=k+ixn

  推导:令   t = n + i   \,t=n+i\, t=n+i,则   n = t − i   \,n=t-i\, n=ti
∑ n = k ∞ x n + i = ∑ t = k + i ∞ x t = ∑ n = k + i ∞ x n \sum\limits_{n=\color{Purple}k}^\infty x^{\color{Blue}n+i}=\sum\limits_{t=\color{Purple}k+i}^\infty x^{\color{Blue}t}=\sum\limits_{n=\color{Purple}k+i}^\infty x^{\color{Blue}n} n=kxn+i=t=k+ixt=n=k+ixn

k   k\, k阶导的等价下标变换

   2   2\, 2阶导:
( ∑ n = 0 ∞ x n ) ′ ′ = ( ∑ n = 1 ∞ x n ) ′ ′ = ( ∑ n = 2 ∞ x n ) ′ ′ \bigg(\sum\limits_{n=\color{Blue}0}^\infty x^n\bigg)''=\bigg(\sum\limits_{n=\color{Blue}1}^\infty x^n\bigg)''=\bigg(\sum\limits_{n=\color{Blue}2}^\infty x^n\bigg)'' (n=0xn)=(n=1xn)=(n=2xn)

   k   k\, k阶导:
( ∑ n = 0 ∞ x n ) ( k ) = ( ∑ n = 1 ∞ x n ) ( k ) = . . . = ( ∑ n = k ∞ x n ) ( k ) \bigg(\sum\limits_{n=\color{Blue}0}^\infty x^n\bigg)^{(k)}=\bigg(\sum\limits_{n=\color{Blue}1}^\infty x^n\bigg)^{(k)}=...=\bigg(\sum\limits_{n=\color{Blue}k}^\infty x^n\bigg)^{(k)} (n=0xn)(k)=(n=1xn)(k)=...=(n=kxn)(k)

拆项和补项

  在计算过程中,适当的拆项或补项可能减少很大的计算量.
∑ n = 0 ∞ x n = 1 + ∑ n = 1 ∞ x n = 1 + x + ∑ n = 2 ∞ x n = . . . . = 1 + x + . . . + x k − 1 + ∑ n = k ∞ x n \sum\limits_{n=\color{Blue}0}^\infty x^{n}=1+\sum\limits_{n=\color{Blue}1}^\infty x^{n}=1+x+\sum\limits_{n=\color{Blue}2}^\infty x^{n}=....=1+x+...+x^{k-1}+\sum\limits_{n=\color{Blue}k}^\infty x^{n} n=0xn=1+n=1xn=1+x+n=2xn=....=1+x+...+xk1+n=kxn

∑ n = k ∞ x n = ∑ n = k − 1 ∞ x n − x k − 1 = . . . = ∑ n = 1 ∞ x n − x k − 1 − x k − 2 − . . . − x = ∑ n = 0 ∞ x n − x k − 1 − x k − 2 . . . − 1 \sum\limits_{n=\color{Blue}k}^\infty x^{n}=\sum\limits_{n=\color{Blue}k-1}^\infty x^{n}-x^{k-1}=...=\sum\limits_{n=\color{Blue}1}^\infty x^{n}-x^{k-1}-x^{k-2}-...-x=\sum\limits_{n=\color{Blue}0}^\infty x^{n}-x^{k-1}-x^{k-2}...-1 n=kxn=n=k1xnxk1=...=n=1xnxk1xk2...x=n=0xnxk1xk2...1

综合运用

  考虑将下面的两个级数之和整理为一个级数表示:
I = ∑ n = 0 ∞ ( − 1 ) n x 2 n 2 n + 1 + ∑ n = 0 ∞ ( − 1 ) n x 2 n + 2 2 n + 1 I=\sum\limits_{n=0}^\infty(-1)^n\frac{x^{2n}}{2n+1}+\sum\limits_{n=0}^\infty(-1)^n\frac{x^{2n+2}}{2n+1} I=n=0(1)n2n+1x2n+n=0(1)n2n+1x2n+2

  对两个级数分别进行拆项下标变换
I = 1 + ∑ n = 1 ∞ ( − 1 ) n x 2 n 2 n + 1 + ∑ n = 1 ∞ ( − 1 ) n − 1 x 2 n 2 n − 1 = 1 + 2 ∑ n = 1 ∞ ( − 1 ) n 1 − 4 n 2 x 2 n I=1+\sum\limits_{n=1}^\infty(-1)^n\frac{x^{2n}}{2n+1}+\sum\limits_{n=1}^\infty(-1)^{n-1}\frac{x^{2n}}{2n-1}=1+2\sum\limits_{n=1}^\infty\frac{(-1)^n}{1-4n^2}x^{2n} I=1+n=1(1)n2n+1x2n+n=1(1)n12n1x2n=1+2n=114n2(1)nx2n

4 函数的幂级数展开

  设函数   f ( x )   \,f(x)\, f(x)   x = x 0   \,x=x_0\, x=x0的邻域内任意阶可到,则   f ( x )   \,f(x)\, f(x)   x = x 0   \,x=x_0\, x=x0可以展开成幂级数为:

f ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n f(x)=\sum\limits_{n=0}^\infty \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n f(x)=n=0n!f(n)(x0)(xx0)n

  称   ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n   \,\sum\limits_{n=0}^\infty \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n\, n=0n!f(n)(x0)(xx0)n   f ( x )   \,f(x)\, f(x)泰勒级数.

  特别地,若   x 0 = 0 \,x_0=0 x0=0,称   ∑ n = 0 ∞ f ( n ) ( 0 ) n ! x n   \,\sum\limits_{n=0}^\infty \frac{f^{(n)}(0)}{n!}x^n\, n=0n!f(n)(0)xn   f ( x )   \,f(x)\, f(x)麦克劳林级数.

  注意:泰勒级数泰勒展开式不是同一个概念. 泰勒级数额外带有级数的性质 (比如余项的极限为   0   \,0\, 0).

  基本思路

    (1) 展开方法:直接展开法、间接展开法.

    (2) 工具
      a) 常见函数的麦克劳林级数.
      b) 幂级数的运算(四则运算、逐项求导逐项积分)及变量代换等.

    (3) 过程
      a) 根据类型进行展开;
      b) 确定收敛区间;
      c) 讨论端点敛散性,确定最终收敛域;

    注意任何情况最后都要讨论端点的敛散性! (除非端点不在定义域内).

(一) 常见函数的麦克劳林级数

  以下麦克劳林级数需要熟练记忆:
e x = ∑ n = 0 ∞ x n n !        ( − ∞ < x < + ∞ ) e^x=\sum\limits_{n=0}^\infty\frac{x^n}{n!}\;\;\;(-\infty < x < +\infty) ex=n=0n!xn(<x<+) 1 1 − x = ∑ n = 0 ∞ x n        ( − 1 < x < 1 ) \frac{1}{1-x}=\sum\limits_{n=0}^\infty x^n\;\;\;\color{Blue}(-1 < x < 1) 1x1=n=0xn(1<x<1) 1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n        ( − 1 < x < 1 ) \frac{1}{1+x}=\sum\limits_{n=0}^\infty(-1)^nx^n\;\;\;\color{Blue}(-1 < x < 1) 1+x1=n=0(1)nxn(1<x<1) sin x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) !        ( − ∞ < x < + ∞ ) \text{sin}x=\sum\limits_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{(2n+1)!}\;\;\;(-\infty < x < +\infty) sinx=n=0(1)n(2n+1)!x2n+1(<x<+) cos x = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) !        ( − ∞ < x < + ∞ ) \text{cos}x=\sum\limits_{n=0}^\infty(-1)^n\frac{x^{2n}}{(2n)!}\;\;\;(-\infty < x < +\infty) cosx=n=0(1)n(2n)!x2n(<x<+) ln ( 1 + x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 x n n        ( − 1 < x ⩽ 1 ) \text{ln}(1+x)=\sum\limits_{\color{Blue}n=1}^\infty(-1)^{\color{Red}{n-1}}\frac{x^n}{n}\;\;\;\color{Blue}(-1 < x \leqslant 1) ln(1+x)=n=1(1)n1nxn(1<x1) − ln ( 1 − x ) = ∑ n = 1 ∞ x n n        ( − 1 ⩽ x < 1 ) -\text{ln}(1-x)=\sum\limits_{\color{Blue}n=1}^\infty\frac{x^n}{n}\;\;\;\color{Blue}(-1 \leqslant x < 1) ln(1x)=n=1nxn(1x<1) arctan x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1        ( − 1 ⩽ x ⩽ 1 ) \text{arctan}x=\sum\limits_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{2n+1}\;\;\;\color{Blue}(-1 \leqslant x \leqslant 1) arctanx=n=0(1)n2n+1x2n+1(1x1) ( 1 + x ) a = ∑ n = 0 ∞ a ⋅ ( a − 1 ) . . . ( a − n + 1 ) n !   x n        ( 只 考   − 1 < x < 1 ,   a ∈ R ) (1+x)^a=\sum\limits_{n=0}^\infty\frac{a\cdot(a-1)...(a-n+1)}{n!}\,x^{n}\;\;\;(只考\,{\color{Blue}{-1< x < 1}},\,a\in \mathbb{R}) (1+x)a=n=0n!a(a1)...(an+1)xn(1<x<1,aR) a x = e x ln a = ∑ n = 0 ∞ ( ln a ) n x n n !        ( − ∞ < x < + ∞ ) a^x=e^{x\text{ln}a}=\sum\limits_{n=0}^\infty\frac{(\text{ln}a)^nx^n}{n!}\;\;\;(-\infty < x < +\infty) ax=exlna=n=0n!(lna)nxn(<x<+)

  注意:以防考场忘记,下面再给出一些记忆线索,但必须在熟记上面级数的基础上.
    (1) e x e^x ex:麦克劳林一般公式所有导数部分(包括   f ( 0 ) \,f(0) f(0))都取   1   \,1\, 1可得.
    (2) 1 1 − x \frac{1}{1-x} 1x1   1   \,1\, 1减首项分之公比 (无穷等比数列的求和).
    (3) 1 1 + x \frac{1}{1+x} 1+x1:替换   1 1 − x   \,\frac{1}{1-x}\, 1x1级数中的   x   \,x\, x   − x \,-x x.
    (4) sin x \text{sin}x sinx:都是奇数项,正负交替,结合   sin x ∼ x   ( x → 0 )   \,\text{sin}x\sim x\,(x\to 0)\, sinxx(x0)记忆.
    (5) cos x \text{cos}x cosx:都是偶数项,正负交替,结合   cos x ∼ 1 − 1 2 x 2   ( x → 0 )   \,\text{cos}x\sim 1-\frac{1}{2}x^2\,(x\to 0)\, cosx121x2(x0)记忆.
    (6) ln ( 1 + x ) \text{ln}(1+x) ln(1+x) ln ( 1 + x ) ′ = 1 1 + x \text{ln}(1+x)'=\frac{1}{1+x} ln(1+x)=1+x1,所以对   1 1 + x   \,\frac{1}{1+x}\, 1+x1每项求积分即得.
    (7) − ln ( 1 − x ) -\text{ln}(1-x) ln(1x):与   e x   \,e^x\, ex麦克劳林公式的差距只是分母没有阶乘.
    (8) arctan x \text{arctan}x arctanx ( arctan x ) ′ = 1 1 + x 2 (\text{arctan}x)'=\frac{1}{1+x^2} (arctanx)=1+x21,利用   1 1 + x   \,\frac{1}{1+x}\, 1+x1可求. 与 sin x   \text{sin}x\, sinx麦克劳林公式的差距只是分母没有阶乘.
    (9) 关于收敛域
       e x e^x ex sin x \text{sin}x sinx cos x   \text{cos}x\, cosx a x   a^x\, ax收敛域都是   ( − ∞ , + ∞ ) \,(-\infty,+\infty) (,+)
       1 1 − x \frac{1}{1-x} 1x1 1 1 + x   \frac{1}{1+x}\, 1+x1收敛域都是   ( − 1 , 1 ) \,(-1,1) (1,1)
       ln ( 1 + x )   \text{ln}(1+x)\, ln(1+x)   ( − 1 , 1 ]   \,(-1,1]\, (1,1] − ln ( 1 − x )   -\text{ln}(1-x)\, ln(1x)   [ − 1 , 1 ) \,[-1,1) [1,1)
       arctan x   \text{arctan}x\, arctanx   [ − 1 , 1 ] \,[-1,1] [1,1]
    (10) ln ( 1 + x ) \text{ln}(1+x) ln(1+x) − ln ( 1 − x )   -\text{ln}(1-x)\, ln(1x)级数从   n = 1   \,n=1\, n=1开始.
    (11) ln ( 1 + x )   \text{ln}(1+x)\, ln(1+x)   ( − 1 ) n − 1 \,(-1)^{n-1} (1)n1.

(二) 直接展开法 (不常用)

  步骤
    以下面的   f ( x )   \,f(x)\, f(x)为例,将其展开为   x   \,x\, x的幂级数, m   m\, m为任意常数:
f ( x ) = ( 1 + x ) m f(x)=(1+x)^m f(x)=(1+x)m

    step 1:求   f ( x )   \,f(x)\, f(x)的各阶导数在   x = 0   \,x=0\, x=0的值.

f ( 0 ) = 1 ,   f ′ ( 0 ) = m ,   f ′ ′ ( 0 ) = m ( m − 1 ) , . . . , f ( n ) ( 0 ) = m ( m − 1 ) . . . ( m − n + 1 ) f(0)=1,\,f'(0)=m,\,f''(0)=m(m-1),...,f^{(n)}(0)=m(m-1)...(m-n+1) f(0)=1,f(0)=m,f(0)=m(m1),...,f(n)(0)=m(m1)...(mn+1)

    step 2:写出   f ( x )   \,f(x)\, f(x)的麦克劳林级数,并求出收敛半径   R \,R R.

f ( x ) = 1 + m x + m ( m − 1 ) 2 ! x 2 + . . . + m ( m − 1 ) . . . ( m − n + 1 ) n ! x n + . . . f(x)=1+mx+\frac{m(m-1)}{2!}x^2+...+\frac{m(m-1)...(m-n+1)}{n!}x^n+... f(x)=1+mx+2!m(m1)x2+...+n!m(m1)...(mn+1)xn+...

1 R = lim ⁡ n → ∞ ∣ a n + 1 a n ∣ = lim ⁡ n → ∞ ∣ a n + 1 a n ∣ = lim ⁡ n → ∞ ∣ m − n n + 1 ∣ = 1 ⇒ R = 1 \frac{1}{R}=\lim_{n\to\infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|=\lim_{n\to\infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|=\lim_{n\to\infty}\bigg|\frac{m-n}{n+1}\bigg|=1\Rightarrow R=1 R1=nlimanan+1=nlimanan+1=nlimn+1mn=1R=1

    step 3:判断在   ( − R , R )   \,(-R,R)\, (R,R)   lim ⁡ n → ∞ R n ( x )   \,\lim\limits_{n\to\infty}R_n(x)\, nlimRn(x)是否为   0 \,0 0.

        显然,   lim ⁡ n → ∞ R n ( x ) = 0 \,\lim\limits_{n\to\infty}R_n(x)=0 nlimRn(x)=0. 故   f ( x )   \,f(x)\, f(x)展开式为:
f ( x ) = 1 + m x + m ( m − 1 ) 2 ! x 2 + . . . + m ( m − 1 ) . . . ( m − n + 1 ) n ! x n + . . .    ( − 1 < x < 1 ) f(x)=1+mx+\frac{m(m-1)}{2!}x^2+...+\frac{m(m-1)...(m-n+1)}{n!}x^n+...\;(-1<x<1) f(x)=1+mx+2!m(m1)x2+...+n!m(m1)...(mn+1)xn+...(1<x<1)

    step 4:讨论端点的敛散性.
        其中   x = ± 1   \,x=\pm1\, x=±1的敛散性与   m   \,m\, m有关.

(三) 间接展开法

  间接展开法就是利用已知的函数展开式和幂级数,将函数展开成幂级数. 应当重点掌握.

(1) 有理分式: f ( x ) = P ( x ) Q ( x ) f(x)=\frac{P(x)}{Q(x)} f(x)=Q(x)P(x)

  思路:对有理分式进行拆解,然后通过对每一个拆解项变形,套用   1 1 − x   \,\color{Blue}\frac{1}{1-x}\, 1x1   1 1 + x   \,\color{Blue}\frac{1}{1+x}\, 1+x1这两个麦克劳林级数展开.

  关于如何拆解
    (1) f ( x )   f(x)\, f(x)为假分式:
f ( x ) = 多 项 式 + 真 分 式 f(x)=多项式+真分式 f(x)=+

    (2) f ( x )   f(x)\, f(x)为真分式
f ( x ) = 分 子 不 变 因 式 分 解 = ( 拆 分 成 的 ) 部 分 和 f(x)=\frac{分子不变}{因式分解}=(拆分成的)部分和 f(x)==()

    详细拆法在积分学有理函数不定积分部分已有详细总结,不再赘述.

  步骤
    以下面的   f ( x )   \,f(x)\, f(x)为例,将其展开为   ( x − 4 )   \,(x-4)\, (x4)的幂级数:
f ( x ) = 1 x 2 − 3 x + 2 f(x)=\frac{1}{x^2-3x+2} f(x)=x23x+21

    step 1:对   P ( x )   \,P(x)\, P(x)因式分解,拆解   f ( x ) \,f(x) f(x).
f ( x ) = 1 x 2 − 3 x + 2 = 1 x − 2 − 1 x − 1 f(x)=\frac{1}{x^2-3x+2}=\frac{1}{x-2}-\frac{1}{x-1} f(x)=x23x+21=x21x11

    step 2:根据展开要求,对每一个拆解项进行变形,方便套用   1 1 − x   \,\frac{1}{1-x}\, 1x1   1 1 + x   \,\frac{1}{1+x}\, 1+x1级数.
1 x − 2 = 1 2 + ( x − 4 ) = 1 2 ⋅ 1 1 + x − 4 2 = 1 2 ∑ n = 0 ∞ ( − 1 ) n ( x − 4 2 ) n = ∑ n = 0 ∞ ( − 1 ) n 2 n + 1 ( x − 4 ) n \frac{1}{x-2}=\frac{1}{2+(x-4)}=\frac{1}{2}\cdot\frac{1}{1+\frac{x-4}{2}}=\frac{1}{2}\sum\limits_{n=0}^\infty(-1)^n(\frac{x-4}{2})^n=\sum\limits_{n=0}^\infty\frac{(-1)^n}{2^{n+1}}(x-4)^n x21=2+(x4)1=211+2x41=21n=0(1)n(2x4)n=n=02n+1(1)n(x4)n

    step 3确定收敛区间,范围从使用麦克劳林级数的地方开始确定,最终是收敛区间与定义域的交集.
− 1 < x − 4 2 < 1 ⇒ 2 < x < 6 -1<\frac{x-4}{2}<1\Rightarrow 2<x<6 1<2x4<12<x<6

    step 4合并各拆解项结果得到最终展开式,收敛区间取交集.

    step 5:讨论端点处的敛散性.
      当   x = 2   \,x=2\, x=2时,
∑ n = 0 ∞ ( − 1 ) n 2 n + 1 ( 2 − 4 ) n = ∑ n = 0 ∞ 1 2 = ∞ \sum\limits_{n=0}^\infty\frac{(-1)^n}{2^{n+1}}(2-4)^n=\sum\limits_{n=0}^\infty\frac{1}{2}=\infty n=02n+1(1)n(24)n=n=021=

      当   x = − 2   \,x=-2\, x=2时,
∑ n = 0 ∞ ( − 1 ) n 2 n + 1 ( − 2 − 4 ) n = ∑ n = 0 ∞ 3 n 2 = ∞ \sum\limits_{n=0}^\infty\frac{(-1)^n}{2^{n+1}}(-2-4)^n=\sum\limits_{n=0}^\infty\frac{3^n}{2}=\infty n=02n+1(1)n(24)n=n=023n=

    注意
      (1) 级数中有限次的   x   \,x\, x可以随意出入求和符号,比如展开 f ( x ) = x 1 + x 2 f(x)=\frac{x}{1+x^2} f(x)=1+x2x,就可以先展开 1 1 + x 2 \frac{1}{1+x^2} 1+x21,最后再乘以一个   x \,x x,因为:
∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 = x ∑ n = 0 ∞ ( − 1 ) n x 2 n \sum\limits_{n=0}^\infty(-1)^n x^{2n+1}=x\sum\limits_{n=0}^\infty(-1)^n x^{2n} n=0(1)nx2n+1=xn=0(1)nx2n

      又比如:
      (2) 之后的几种方法除拆分思路有差异外,其余步骤大同小异,故后面都简略表述.

(2) 对数: ln P ( x ) \text{ln}P(x) lnP(x)

  思路:对   ln   \,\text{ln}\, ln内部的多项式   P ( x )   \,P(x)\, P(x)进行因式分解,利用对数性质拆解为若干   ln   \,\text{ln}\, ln项,套用   ln ( 1 + x )   \,\color{Blue}\text{ln}(1+x)\, ln(1+x)   − ln ( 1 − x )   \,\color{Blue}-\text{ln}(1-x)\, ln(1x)这两个麦克劳林级数展开.

  拆解方法
ln ( a + b x ) ( c + d x ) = ln ( a + b x ) + ln ( c + d x ) = ln a + ln ( 1 + b a x ) + ln c + ln ( 1 + d c x ) \text{ln}(a+bx)(c+dx)=\text{ln}(a+bx)+\text{ln}(c+dx)=\text{ln}a+\text{ln}(1+\frac{b}{a}x)+\text{ln}c+\text{ln}(1+\frac{d}{c}x) ln(a+bx)(c+dx)=ln(a+bx)+ln(c+dx)=lna+ln(1+abx)+lnc+ln(1+cdx)

  注意拆解的符号问题
f ( x ) = ln P ( x ) = ln ∣ P 1 ( x ) ∣ + ln ∣ P 2 ( x ) ∣ f(x)=\text{ln}P(x)=\text{ln}|P_1(x)|+\text{ln}|P_2(x)| f(x)=lnP(x)=lnP1(x)+lnP2(x)

    代入   x = 0   \,\color{Blue}x=0\, x=0点可以判断   P 1 ( x ) \,P_1(x) P1(x) P 2 ( x )   P_2(x)\, P2(x)正负,从而去掉绝对值 (因为展开成   ∑ n = 0 ∞ a n x n   \,\sum\limits_{n=0}^\infty a_nx^n\, n=0anxn的级数   x = 0   \,x=0\, x=0总在收敛域内).

  步骤
    以下面的   f ( x )   \,f(x)\, f(x)为例,将其展开为   x   \,x\, x的幂级数:
f ( x ) = ln ( 1 − 3 x + 2 x 2 ) f(x)=\text{ln}(1-3x+2x^2) f(x)=ln(13x+2x2)

    step 1:对   P ( x )   \,P(x)\, P(x)因式分解,拆解   f ( x ) \,f(x) f(x)去绝对值.
f ( x ) = ln ( 1 − 3 x + 2 x 2 ) = ln ( 2 x − 1 ) ( x − 1 ) = ln ∣ 2 x − 1 ∣ + ln ∣ x − 1 ∣ f(x)=\text{ln}(1-3x+2x^2)=\text{ln}(2x-1)(x-1)=\text{ln}|2x-1|+\text{ln}|x-1| f(x)=ln(13x+2x2)=ln(2x1)(x1)=ln2x1+lnx1 x = 0 ⇒ ( 2 x − 1 ) < 0 , ( x − 1 ) < 0 ⇒ f ( x ) = ln ( 1 − 2 x ) + ln ( 1 − x ) x=0\Rightarrow (2x-1)<0,(x-1)<0\Rightarrow f(x)=\text{ln}(1-2x)+\text{ln}(1-x) x=0(2x1)<0(x1)<0f(x)=ln(12x)+ln(1x)

    step 2:根据展开要求,对每一个拆解项进行变形,方便套用   ln ( 1 + x )   \,\text{ln}(1+x)\, ln(1+x)   − ln ( 1 − x )   \,-\text{ln}(1-x)\, ln(1x)这两个级数.
ln ( 1 − 2 x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 ( − 2 x ) n n = − ∑ n = 1 ∞ 2 n n ⋅ x n \text{ln}(1-2x)=\sum\limits_{n=1}^\infty (-1)^{n-1}\frac{(-2x)^n}{n}=-\sum\limits_{n=1}^\infty\frac{2^n}{n}\cdot x^n ln(12x)=n=1(1)n1n(2x)n=n=1n2nxn

    step 3:确定收敛区间并讨论端点敛散性.
− 1 < − 2 x ⩽ 1 ⇒ − 1 2 ⩽ x < 1 2 -1<-2x\leqslant1\Rightarrow -\frac{1}{2}\leqslant x<\frac{1}{2} 1<2x121x<21 x = − 1 2 , . . . x=-\frac{1}{2},... x=21,...

(3) 三角函数: cos P ( x ) \text{cos}P(x) cosP(x) sin P ( x ) \text{sin}P(x) sinP(x)

  思路:根据   sin P ( x )   \,\text{sin}P(x)\, sinP(x)   cos P ( x )   \,\text{cos}P(x)\, cosP(x)   P ( x )   \,P(x)\, P(x)的特点,使用三角函数公式拆解,套用   sin x   \,\color{Blue}\text{sin}x\, sinx cos x   \color{Blue}\text{cos}x\, cosx级数.

  三角函数公式

    下面列举需要记忆的三角函数公式,在拆解是可能需要用到: sin ( α + β ) = sin α   cos β + cos α   sin β \text{sin}(\alpha+\beta)=\text{sin}\alpha\,\text{cos}\beta+\text{cos}\alpha\,\text{sin}\beta sin(α+β)=sinαcosβ+cosαsinβ sin ( α − β ) = sin α   cos β − cos α   sin β \text{sin}(\alpha-\beta)=\text{sin}\alpha\,\text{cos}\beta-\text{cos}\alpha\,\text{sin}\beta sin(αβ)=sinαcosβcosαsinβ cos ( α + β ) = cos α   cos β − sin α   sin β \text{cos}(\alpha+\beta)=\text{cos}\alpha\,\text{cos}\beta-\text{sin}\alpha\,\text{sin}\beta cos(α+β)=cosαcosβsinαsinβ cos ( α − β ) = cos α   cos β + sin α   sin β \text{cos}(\alpha-\beta)=\text{cos}\alpha\,\text{cos}\beta+\text{sin}\alpha\,\text{sin}\beta cos(αβ)=cosαcosβ+sinαsinβ tan ( α + β ) = tan α + tan β 1 − tan α   tan β \text{tan}(\alpha+\beta)=\frac{\text{tan}\alpha+\text{tan}\beta}{1-\text{tan}\alpha\,\text{tan}\beta} tan(α+β)=1tanαtanβtanα+tanβ tan ( α − β ) = tan α − tan β 1 + tan α   tan β \text{tan}(\alpha-\beta)=\frac{\text{tan}\alpha-\text{tan}\beta}{1+\text{tan}\alpha\,\text{tan}\beta} tan(αβ)=1+tanαtanβtanαtanβ sin α   cos β = sin ( α + β ) + sin ( α − β ) 2 \text{sin}\alpha\,\text{cos}\beta=\frac{\text{sin}(\alpha+\beta)+\text{sin}(\alpha-\beta)}{2} sinαcosβ=2sin(α+β)+sin(αβ) cos α   sin β = sin ( α + β ) − sin ( α − β ) 2 \text{cos}\alpha\,\text{sin}\beta=\frac{\text{sin}(\alpha+\beta)-\text{sin}(\alpha-\beta)}{2} cosαsinβ=2sin(α+β)sin(αβ) cos α   cos β = cos ( α + β ) + cos ( α − β ) 2 \text{cos}\alpha\,\text{cos}\beta=\frac{\text{cos}(\alpha+\beta)+\text{cos}(\alpha-\beta)}{2} cosαcosβ=2cos(α+β)+cos(αβ) sin α   sin β = cos ( α + β ) − cos ( α − β ) − 2 \text{sin}\alpha\,\text{sin}\beta=\frac{\text{cos}(\alpha+\beta)-\text{cos}(\alpha-\beta)}{-2} sinαsinβ=2cos(α+β)cos(αβ) sin α + sin β = 2   sin α + β 2   cos α − β 2 \text{sin}\alpha+\text{sin}\beta=2\,\text{sin}\frac{\alpha+\beta}{2}\,\text{cos}\frac{\alpha-\beta}{2} sinα+sinβ=2sin2α+βcos2αβ sin α − sin β = 2   cos α + β 2   sin α − β 2 \text{sin}\alpha-\text{sin}\beta=2\,\text{cos}\frac{\alpha+\beta}{2}\,\text{sin}\frac{\alpha-\beta}{2} sinαsinβ=2cos2α+βsin2αβ cos α + cos β = 2   cos α + β 2   cos α − β 2 \text{cos}\alpha+\text{cos}\beta=2\,\text{cos}\frac{\alpha+\beta}{2}\,\text{cos}\frac{\alpha-\beta}{2} cosα+cosβ=2cos2α+βcos2αβ cos α − cos β = − 2   sin α + β 2   sin α − β 2 \text{cos}\alpha-\text{cos}\beta=-2\,\text{sin}\frac{\alpha+\beta}{2}\,\text{sin}\frac{\alpha-\beta}{2} cosαcosβ=2sin2α+βsin2αβ

  步骤
    以下面的   f ( x )   \,f(x)\, f(x)为例,将其展开为   ( x + π 3 )   \,(x+\frac{\pi}{3})\, (x+3π)的幂级数:
f ( x ) = cos x f(x)=\text{cos}x f(x)=cosx

    step 1:根据展开要求,对   P ( x )   \,P(x)\, P(x)使用三角函数公式进行变形,拆解   f ( x ) \,f(x) f(x).
f ( x ) = cos ( x + π 3 − π 3 ) = cos ( x + π 3 ) cos π 3 + sin ( x + π 3 ) sin π 3 = 1 2   cos ( x + π 3 ) + 3 2   sin ( x + π 3 ) f(x)=\text{cos}(x+\frac{\pi}{3}-\frac{\pi}{3})=\text{cos}(x+\frac{\pi}{3})\text{cos}\frac{\pi}{3}+\text{sin}(x+\frac{\pi}{3})\text{sin}\frac{\pi}{3}=\frac{1}{2}\,\text{cos}(x+\frac{\pi}{3})+\frac{\sqrt{3}}{2}\,\text{sin}(x+\frac{\pi}{3}) f(x)=cos(x+3π3π)=cos(x+3π)cos3π+sin(x+3π)sin3π=21cos(x+3π)+23 sin(x+3π)

    step 2:套用   sin x   \,\color{Blue}\text{sin}x\, sinx   cos x   \,\color{Blue}\text{cos}x\, cosx这两个级数.
f ( x ) = 1 2 ∑ n = 0 ∞ ( − 1 ) n 1 ( 2 n ) ! ( x + π 3 ) 2 n + 3 2 ∑ n = 0 ∞ ( − 1 ) n 1 ( 2 n + 1 ) ! ( x + π 3 ) 2 n + 1 f(x)=\frac{1}{2}\sum\limits_{n=0}^{\infty}(-1)^n\frac{1}{(2n)!}(x+\frac{\pi}{3})^{2n}+\frac{\sqrt{3}}{2}\sum\limits_{n=0}^{\infty}(-1)^n\frac{1}{(2n+1)!}(x+\frac{\pi}{3})^{2n+1} f(x)=21n=0(1)n(2n)!1(x+3π)2n+23 n=0(1)n(2n+1)!1(x+3π)2n+1

    step 3:确定收敛区间并讨论端点敛散性.
− ∞ < x < + ∞ -\infty<x<+\infty <x<+

(4) 先求积分再求导

  有的   f ( x )   \,f(x)\, f(x)不能通过变形直接套公式展开,可以考虑先求积分再求导.

  思路:先对   f ( x )   \,f(x)\, f(x)求积分得到   F ( x ) \,F(x) F(x),展开   F ( x )   \,F(x)\, F(x)后再求导恢复.

  步骤
    以下面的   f ( x )   \,f(x)\, f(x)为例,将其展开为   x   \,x\, x的幂级数:
f ( x ) = 1 x 2 + 2 x + 1 f(x)=\frac{1}{x^2+2x+1} f(x)=x2+2x+11

    step 1:求   f ( x )   \,f(x)\, f(x)不定积分.
f ( x ) = 1 ( x + 1 ) 2 f(x)=\frac{1}{(x+1)^2} f(x)=(x+1)21 ∫ 1 ( x + 1 ) 2 d x = − 1 x + 1 + C \int\frac{1}{(x+1)^2}\text{d}x=-\frac{1}{x+1}+C (x+1)21dx=x+11+C

    step 2:令   g ( x )   \,g(x)\, g(x)   f ( x )   \,f(x)\, f(x)的一个原函数,对其展开.
令   g ( x ) = − 1 x + 1 , g ′ ( x ) = f ( x ) 令\,g(x)=-\frac{1}{x+1},g'(x)=f(x) g(x)=x+11g(x)=f(x) g ( x ) = ∑ n = 0 ∞ ( − 1 ) n + 1 x n g(x)=\sum\limits_{n=0}^{\infty}(-1)^{n+1}x^n g(x)=n=0(1)n+1xn

    step 3:把展开后   g ( x )   \,g(x)\, g(x)中的   n = 0   \,n=0\, n=0项单独拆出来,再求导即得到   f ( x )   \,f(x)\, f(x)展开.

g ( x ) = ∑ n = 0 ∞ ( − 1 ) n + 1 x n = − 1 + ∑ n = 1 ∞ ( − 1 ) n + 1 x n g(x)=\sum\limits_{n=0}^{\infty}(-1)^{n+1}x^n=-1+\sum\limits_{n=1}^{\infty}(-1)^{n+1}x^n g(x)=n=0(1)n+1xn=1+n=1(1)n+1xn f ( x ) = g ′ ( x ) = ∑ n = 1 ∞ ( − 1 ) n + 1 n x n − 1 = ∑ n = 0 ∞ ( − 1 ) n ( n + 1 ) x n    ( − 1 < x < 1 ) f(x)=g'(x)=\sum\limits_{n=1}^{\infty}(-1)^{n+1}nx^{n-1}=\sum\limits_{n=0}^{\infty}(-1)^{n}(n+1)x^{n}\;(-1<x<1) f(x)=g(x)=n=1(1)n+1nxn1=n=0(1)n(n+1)xn(1<x<1)

    step 4:确定收敛区间并讨论端点敛散性.

    注意
      (1) 之所以要把的   n = 0   \,n=0\, n=0项拆出来,是因为如果不拆,直接按照求导公式求导,将会产生   x − 1 \,x^{-1} x1,而事实上   n = 0   \,n=0\, n=0这项就等于   − 1 \,-1 1,求导以后就是   0 \,0 0. 不管是幂级数展开,还是后面的求和函数,只要发现   x 0   \,\color{Blue}x^0\, x0项的存在,就要小心.
      (2) 注意到最后展开把   x n − 1   \,x^{n-1}\, xn1转化为题目要求的   x n \,x^n xn,如果不能直接看出,建议写出前几项,然后找规律确定.

(5) 先求导再求积分

  和先积分后求导类似.

  思路:先对   f ( x )   \,f(x)\, f(x)求导数得到   f ′ ( x ) \,f'(x) f(x),展开   f ′ ( x )   \,f'(x)\, f(x)后再求积分恢复.

  步骤
    以下面的   f ( x )   \,f(x)\, f(x)为例,将其展开为   x   \,x\, x的幂级数:
f ( x ) = x arctan x − ln 1 + x 2 f(x)=x\text{arctan}x-\text{ln}\sqrt{1+x^2} f(x)=xarctanxln1+x2

    step 1:求   f ′ ( x ) \,f'(x) f(x).
f ′ ( x ) = arctan x + x 1 + x 2 − 1 2 ⋅ 2 x 1 + x 2 = arctan x f'(x)=\text{arctan}x+\frac{x}{1+x^2}-\frac{1}{2}\cdot\frac{2x}{1+x^2}=\text{arctan}x f(x)=arctanx+1+x2x211+x22x=arctanx

    step 2:对   f ′ ( x )   \,f'(x)\, f(x)展开.
f ′ ( x ) = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 f'(x)=\sum\limits_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{2n+1} f(x)=n=0(1)n2n+1x2n+1

    step 3:利用   N . − L .   \,N.-L.\, N.L.恢复   f ( x ) \,f(x) f(x)
f ( x ) = f ( 0 ) + ∫ 0 x f ′ ( x ) d x = 0 + ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ( 2 n + 2 )   x 2 n + 2 = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ( 2 n + 2 )   x 2 n + 2 f(x)={\color{Red}f(0)}+\int^x_0f'(x)\text{d}x=0+\sum\limits_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)(2n+2)}\,x^{2n+2}=\sum\limits_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)(2n+2)}\,x^{2n+2} f(x)=f(0)+0xf(x)dx=0+n=0(2n+1)(2n+2)(1)nx2n+2=n=0(2n+1)(2n+2)(1)nx2n+2

    step 4:确定收敛区间并讨论端点敛散性.
    注意
      (1)不管是展开为幂级数还是后面求和函数,积分可以使用不定积分或   N . − L .   \,N.-L.\, N.L.进行恢复,两种方法本质上都是一样的. 但是不定积分不要漏掉   C \,C C N . − L .   N.-L.\, N.L.不要漏掉   f ( 0 ) \,f(0) f(0)
      (2) 之所以使用   f ( 0 )   \,f(0)\, f(0)纯粹是为了好算. 特别注意并非所有题目   f ( 0 )   \,f(0)\, f(0)都为   0 \,0 0,有的题目   0   \,0\, 0甚至不在定义域里,就要换其他点计算.

(四) 已知   f ( x )   \,f(x)\, f(x),求   f ( n ) ( 0 )   \,f^{(n)}(0)\, f(n)(0)

  思路
    step 1:展开   f ( x )   \,f(x)\, f(x)为幂级数.
    step 2:按照下面的方法求得   f ( n ) ( 0 ) \,f^{(n)}(0) f(n)(0).

  方法
f ( x ) = ∑ n = 0 ∞ a n ⋅ x n = a 0 + a 1 x + a 2 x 2 + . . . + a n x n + . . . f(x)=\sum\limits_{n=0}^{\infty}a_n\cdot x^n=a_0+a_1x+a_2x^2+...+a_nx^n+... f(x)=n=0anxn=a0+a1x+a2x2+...+anxn+...

    由麦克劳林公式:
a n = f ( n ) ( 0 ) n ! a_n=\frac{f^{(n)}(0)}{n!} an=n!f(n)(0)

    所以,
f ( n ) ( 0 ) = a n ⋅ n ! \color{Blue}f^{(n)}(0)=a_n\cdot n! f(n)(0)=ann!

    因此求   f ( n ) ( 0 ) \,f^{(n)}(0) f(n)(0),实际上就是找展开级数中   a n x n \,a_nx^n anxn项的   a n \,a_n an.

  (结合立方和公式) 例. 求下面   f ( x )   \,f(x)\, f(x)的四阶导:   f ( 4 ) ( 0 ) \,f^{(4)}(0) f(4)(0).
f ( x ) = 1 + x + x 2 1 − x + x 2 f(x)=\frac{1+x+x^2}{1-x+x^2} f(x)=1x+x21+x+x2

  解:
f ( x ) = 1 + 2 x 1 − x + x 2 = 1 + 2 x ( 1 + x ) ( 1 − x + x 2 ) ( 1 + x ) = 1 + 2 x + 2 x 2 1 + x 3 f(x)=1+\frac{2x}{1-x+x^2}=1+\frac{2x(1+x)}{(1-x+x^2)(1+x)}=1+\frac{2x+2x^2}{1+x^3} f(x)=1+1x+x22x=1+(1x+x2)(1+x)2x(1+x)=1+1+x32x+2x2
= 1 + ( 2 x + 2 x 2 ) ∑ n = 0 ∞ ( − 1 ) n x 3 n =1+(2x+2x^2)\sum\limits_{n=0}^{\infty}(-1)^nx^{3n} =1+(2x+2x2)n=0(1)nx3n

    显然,只有当   n = 1   \,n=1\, n=1时,有   a 4 x 4 = 2 x ⋅ ( − x 3 ) = − 2 x 4 \,a_4x^4=2x\cdot(-x^3)=-2x^4 a4x4=2x(x3)=2x4
    所以   f ( 4 ) ( 0 ) = a 4 ⋅ 4 ! = − 2 ⋅ 24 = − 48   \,f^{(4)}(0)=a_4\cdot4!=-2\cdot24=-48\, f(4)(0)=a44!=224=48

  注意
    (1) 若题目求的是   f ( k n ) ( 0 ) \,f^{(kn)}(0) f(kn)(0),或幂级数中是   x k n \,x^{kn} xkn,代   k n   \,kn\, kn求即可.
    (2) 若题目求的是   f ( n ) ( a )   \,f^{(n)}(a)\, f(n)(a),导数求   x = a   \,x=a\, x=a的即可.
    (3) 若是   f ( x )   \,f(x)\, f(x)分段函数,注意需不需要讨论特殊点、 n = 0   n=0\, n=0的情况.

5 求幂级数的和函数

和函数定义

  在收敛域上,记   s ( x ) = ∑ n = 1 ∞ u n ( x )   \,s(x)=\sum\limits^\infty_{n=1}u_n(x)\, s(x)=n=1un(x)   ∑ n = 1 ∞ u n ( x )   \,\sum\limits^\infty_{n=1}u_n(x)\, n=1un(x)的和函数.

幂级数的和函数

s ( x ) = ∑ n = 0 ∞ a n ( x − b ) n = a 0 + a 1 ( x − b ) + a 2 ( x − b ) 2 + . . . , x ∈ I . s(x)=\sum\limits_{n=0}^\infty a_n(x-b)^n=a_0+a_1(x-b)+a_2(x-b)^2+...,x\in I. s(x)=n=0an(xb)n=a0+a1(xb)+a2(xb)2+...xI.

  注意
    (1) I   I\, I代表收敛域.
    (2) 当   x = b   \,x=b\, x=b时,如果代入   ∑ n = 0 ∞ a n ( x − b ) n   \,\sum\limits_{n=0}^\infty a_n(x-b)^n\, n=0an(xb)n会出现   0 0 \,0^0 00. 但实际上代入展开表示的式子, s ( b ) = a 0 s(b)=a_0 s(b)=a0,也就是常数项. 这是因为幂级数引入   0   \,0\, 0次方只是为了表达   x 0 = 1 \,x^0=1 x0=1,表示某一项不与   ( x − b ) k \,(x-b)^k (xb)k,只是一种记号罢了. 如果不能理解,请把级数写成数串的形式,再代入.

求幂级数和函数的基本步骤

  (1) 求出收敛域.
  (2) 令   s ( x ) = ∑ n = 0 ∞ ( . . . )   \,s(x)=\sum\limits_{n=0}^\infty(...)\, s(x)=n=0(...),如果计算过程中发现除   0 \,0 0,要计算单独计算该点.
  (3) 对   s ( x )   \,s(x)\, s(x)进行适当变形,套用常见麦克劳林级数,求得和函数.

几点说明

a) 求和函数的工具

  (1) 常见函数的麦克劳林级数.
  (2) 逐项求导性、逐项积分性.
  (3) 微分方程.

b) 求和函数与展开为幂级数的关系

  求幂级数的和函数,本质上是函数展开成幂级数逆运算
    函数展开成幂级数: f ( x ) → ∑ n = 0 ∞ a n x n f(x)\to\sum\limits_{n=0}^\infty a_nx^n f(x)n=0anxn
    求幂级数和函数: ∑ n = 0 ∞ a n x n → s ( x ) \sum\limits_{n=0}^\infty a_nx^n\to s(x) n=0anxns(x)

c) 及时改变下标

  这是求和函数非常重要的习惯.
  在求和函数的过程中,对幂级数进行求导时(求积分不必考虑),一定要及时地改变下标. 一旦发现某一项为   0 \,0 0,就应从下一项开始表示,比如:

( ∑ n = 0 ∞ x n ) ′ = ∑ n = 1 ∞ n x n − 1 \bigg(\sum\limits_{n=\color{Blue}0}^\infty x^{n}\bigg)'=\sum\limits_{n=\color{Blue}1}^\infty nx^{n-1} (n=0xn)=n=1nxn1

  这是因为求导后原本幂级数的常数项   a 0   \,a_0\, a0变为了   0   \,0\, 0,所以需要下一项开始. 如果不改变,即下面这种情况:
( ∑ n = 0 ∞ x n ) ′ = ∑ n = 0 ∞ n x n − 1 \bigg(\sum\limits_{n=\color{Blue}0}^\infty x^{n}\bigg)'={\color{Red}\sum\limits_{n=0}^\infty nx^{n-1}} (n=0xn)=n=0nxn1
  第一项就成了   x − 1   \,x^{-1}\, x1,出现了负数次方,继续计算一定会出现问题.
  原因就在于第一项原本是常数项,求导后就应该是   0 \,0 0,不能再用这种统一的形式表示.
  再次强调,读者如果不能理解,请尝试把级数写成数串的形式理解.
  除此以外,在拆项和约掉阶乘的过程中,也需要及时更新下标.
  更多下标问题请看上文幂级数分析性质中的下标变换理论.

d) 导致   s ( x )   \,s(x)\, s(x)分段的原因

  1. (   x \,x x) 在对   s ( x )   \,s(x)\, s(x)变形的过程中需要进行除以   x   \,x\, x(凑积分)的操作,所以要单独计算   s ( 0 ) \,s(0) s(0).
  2. (端点) s ( x )   s(x)\, s(x)要讨论完所有收敛域上的情况. 若端点是收敛的,完成变形后,一定要确定   s ( x )   \,s(x)\, s(x)有没有覆盖到,若没有覆盖到,就要单独求.

(1) 先积分再求导

  思路:如果可以看出级数是某个原函数的导数,或者通过乘以或除以有限个   x   \,x\, x达到如此效果,就需要考虑先积分再求导的方法.

  以下面这个幂级数为例:
∑ n = 0 ∞ ( n + 1 ) x n \sum\limits_{n=0}^\infty (n+1)x^n n=0(n+1)xn

     ( n + 1 ) x n   (n+1)x^{n}\, (n+1)xn显然可由   x n + 1   \,x^{n+1}\, xn+1求导而得,考虑先积分在求导.
    令   s ( x ) = ∑ n = 0 ∞ ( n + 1 ) x n \,s(x)=\sum\limits_{n=0}^\infty (n+1)x^n s(x)=n=0(n+1)xn
    收敛半径   R = lim ⁡ n → ∞ ∣ n + 2 n + 1 ∣ = 1 \,R=\lim\limits_{n\to\infty}\big|\frac{n+2}{n+1}\big|=1 R=nlimn+1n+2=1
    显然   x = ± 1 \,x=\pm 1 x=±1,级数发散,故收敛域为: ( − 1 ,   1 ) (-1,\,1) (1,1).

∫ 0 x s ( x ) d x = ∫ 0 x ( ∑ n = 0 ∞ ( n + 1 ) x n ) d x = ∑ n = 0 ∞ ∫ 0 x ( n + 1 ) x n d x = ∑ n = 0 ∞ x n + 1 = x 1 − x \int^x_0s(x)\text{d}x=\int_0^x\bigg(\sum\limits_{n=0}^\infty (n+1)x^n\bigg)\text{d}x=\sum\limits_{n=0}^\infty \int_0^x(n+1)x^n\text{d}x=\sum\limits_{n=0}^\infty x^{n+1}=\frac{x}{1-x} 0xs(x)dx=0x(n=0(n+1)xn)dx=n=00x(n+1)xndx=n=0xn+1=1xx ⇒ s ( x ) = [ ∫ 0 x s ( x ) d x ] ′ = ( x 1 − x ) ′ = 1 ( 1 − x ) 2 \Rightarrow s(x)=\bigg[\int^x_0s(x)\text{d}x\bigg]'=\bigg(\frac{x}{1-x}\bigg)'=\frac{1}{(1-x)^2} s(x)=[0xs(x)dx]=(1xx)=(1x)21  熟练以后,可以简化上面的计算过程为:
∑ n = 0 ∞ ( n + 1 ) x n = ( ∑ n = 0 ∞ x n + 1 ) ′ = ( x 1 − x ) ′ = 1 ( 1 − x ) 2 \sum\limits_{n=0}^\infty (n+1)x^n=\bigg(\sum\limits_{n=0}^\infty x^{n+1}\bigg)'=\bigg(\frac{x}{1-x}\bigg)'=\frac{1}{(1-x)^2} n=0(n+1)xn=(n=0xn+1)=(1xx)=(1x)21

  又比如级数是二阶导的形式:
∑ n = 0 ∞ ( n + 1 ) ( n + 2 ) x n = ( ∑ n = 0 ∞ x n + 2 ) ′ ′ = ( x 2 1 − x ) ′ ′ = 2 ( 1 − x ) 3 \sum\limits_{n=0}^\infty (n+1)(n+2)x^n=\bigg(\sum\limits_{n=0}^\infty x^{n+2}\bigg)''=\bigg(\frac{x^2}{1-x}\bigg)''=\frac{2}{(1-x)^3} n=0(n+1)(n+2)xn=(n=0xn+2)=(1xx2)=(1x)32

  技巧
    可以发现,在计算   ∑ n = 0 ∞ ( n + 1 ) ( n + 2 ) x n   \,\sum\limits_{n=0}^\infty (n+1)(n+2)x^n\, n=0(n+1)(n+2)xn时,最后直接求   ( x 2 1 − x ) ′ ′   \,(\frac{x^2}{1-x})''\, (1xx2)的计算量是比较大的. 但如果熟悉下标变换理论(见幂级数分析性质),就可以通过下面这种拆项的方式简化计算量:

( ∑ n = 0 ∞ x n + 2 ) ′ ′ = ( ∑ n = 2 ∞ x n ) ′ ′ = ( ∑ n = 0 ∞ x n − 1 − x ) ′ ′ = ( 1 1 − x − 1 − x ) ′ ′ = [ 1 ( 1 − x ) 2 − 1 ] ′ = 2 ( 1 − x ) 3 \bigg(\sum\limits_{n=0}^\infty x^{n+2}\bigg)''=\bigg(\sum\limits_{n=2}^\infty x^{n}\bigg)''=\bigg(\sum\limits_{n=0}^\infty x^{n}-1-x\bigg)''=\bigg(\frac{1}{1-x}-1-x\bigg)''=\bigg[\frac{1}{(1-x)^2}-1\bigg]'=\frac{2}{(1-x)^3} (n=0xn+2)=(n=2xn)=(n=0xn1x)=(1x11x)=[(1x)211]=(1x)32

(2) 先求导再积分

  思路:和先求积分再求导类似,如果可以看出级数是某个函数求导的结果,或者通过乘以或除以有限个   x   \,x\, x达到这样的效果,就要考虑先求导再积分的方法.

  读者需要尤其熟悉幂函数的不定积分公式:
∫ x a d x = 1 a + 1 x a + 1 + C \int x^a\text{d}x=\frac{1}{a+1}x^{a+1}+C xadx=a+11xa+1+C

  为了避免处理   C \,C C,我们通常使用   N.-L.   \,\text{N.-L.}\, N.-L.(牛顿莱布尼茨公式) 完成计算 (不定积分公式也能计算):

∫ x 0 x x a d x = 1 a + 1 x a + 1 ∣ x 0 x \int^x_{x_0} x^a\text{d}x=\frac{1}{a+1}x^{a+1}\bigg|^x_{x_0} x0xxadx=a+11xa+1x0x

  此方法无非就是想要先对   1 a + 1 x a + 1   \,\frac{1}{a+1}x^{a+1}\, a+11xa+1求导得到   x a   \,x^a\, xa
  再套用麦克劳林级数求其和函数,最后再积分恢复至原级数的和函数.
  所以首要任务就是凑出   1 a + 1 x a + 1 \,\frac{1}{a+1}x^{a+1} a+11xa+1.

  以下面这个幂级数为例:
∑ n = 0 ∞ 1 ( n + 1 ) x n \sum\limits_{n=0}^\infty \frac{1}{(n+1)}x^n n=0(n+1)1xn

    显然,如果   1 ( n + 1 ) x n   \,\frac{1}{(n+1)}x^n\, (n+1)1xn再乘一个   x   \,x\, x,就能考虑先积分再求导的方法了.
    令   s ( x ) = ∑ n = 0 ∞ 1 ( n + 1 ) x n \,s(x)=\sum\limits_{n=0}^\infty \frac{1}{(n+1)}x^n s(x)=n=0(n+1)1xn
    收敛半径   R = lim ⁡ n → ∞ ∣ n + 1 n + 2 ∣ = 1 \,R=\lim\limits_{n\to\infty}\big|\frac{n+1}{n+2}\big|=1 R=nlimn+2n+1=1 s ( 0 ) = 1 \color{Red}s(0)=1 s(0)=1    当   x = 1   \,x=1\, x=1时,级数发散;当   x = − 1   \,x=-1\, x=1时,级数收敛. 故级数收敛域为: [ − 1 ,   1 ) [-1,\,1) [1,1). 令:
f ( x ) = x s ( x ) = ∑ n = 0 ∞ 1 ( n + 1 ) x n + 1 = ∑ n = 0 ∞ 1 ( n + 1 ) x n + 1 = ∫ 0 x ∑ n = 0 ∞ x n d x = ∫ 0 x 1 1 − x d x f(x)=xs(x)=\sum\limits_{n=0}^\infty \frac{1}{(n+1)}x^{n+1}=\sum\limits_{n=0}^\infty \frac{1}{(n+1)}x^{n+1}=\int^x_0\sum\limits_{n=0}^\infty x^n\text{d}x=\int^x_0\frac{1}{1-x}\text{d}x f(x)=xs(x)=n=0(n+1)1xn+1=n=0(n+1)1xn+1=0xn=0xndx=0x1x1dx f ′ ( x ) = 1 1 − x f'(x)=\frac{1}{1-x} f(x)=1x1 f ( x ) = f ( 0 ) + ∫ 0 x f ′ ( x ) d x = − ln ( 1 − x ) f(x)={\color{Red}f(0)}+\int^x_0f'(x)\text{d}x=-\text{ln}(1-x) f(x)=f(0)+0xf(x)dx=ln(1x) s ( x ) = { − ln ( 1 − x ) x , x ∈ [ − 1 , 0 ) ∪ ( 0 , 1 ) 0 , x = 0 s(x)=\begin{cases}-\frac{\text{ln}(1-x)}{x},&x\in[-1,0)\cup(0,1)\\0,&x=0\end{cases} s(x)={xln(1x),0,x[1,0)(0,1)x=0

  熟练以后,可以不必引入   f ( x )   \,f(x)\, f(x)
    当   x ≠ 0   \,x\neq 0\, x=0时,
s ( x ) = ∑ n = 0 ∞ 1 ( n + 1 ) x n = 1 x ∑ n = 0 ∞ 1 n + 1 x n + 1 s(x)=\sum\limits_{n=0}^\infty \frac{1}{(n+1)}x^n=\frac{1}{x}\sum\limits_{n=0}^\infty\frac{1}{n+1}x^{n+1} s(x)=n=0(n+1)1xn=x1n=0n+11xn+1 = 1 x ∫ 0 x ∑ n = 0 ∞ x n d x = 1 x ∫ 0 x 1 1 − x d x = − ln ( 1 − x ) x =\frac{1}{x}\int^x_0\sum\limits_{n=0}^\infty x^n\text{d}x=\frac{1}{x}\int^x_0\frac{1}{1-x}\text{d}x=-\frac{\text{ln}(1-x)}{x} =x10xn=0xndx=x10x1x1dx=xln(1x)

  注意
    (1) 之所以要单独求   s ( 0 )   \,s(0)\, s(0)是因为后面有除   x   \,x\, x的操作. s ( 0 )   s(0)\, s(0)不一定是   0 \,0 0,最保险求法是把级数前几项写出来代入.
    (2) 使用   N.-L.   \,\text{N.-L.}\, N.-L.计算不要忘记计算   f ( x 0 ) \,f(x_0) f(x0) (此题   x 0 = 0 \,x_0=0 x0=0),并非所有题目都是   f ( 0 ) = 0 \,f(0)=0 f(0)=0.

(3) ∑ n = 0 ∞ P ( n ) x n \sum\limits_{n=0}^\infty P(n)x^n n=0P(n)xn

  思路:将幂级数转化为:
∑ n = 0 ∞ x n = 1 1 − x    ( − 1 < x < 1 ) \sum\limits_{n=0}^\infty x^n=\frac{1}{1-x}\;(-1<x<1) n=0xn=1x1(1<x<1) ∑ n = 0 ∞ ( − 1 ) n x n = 1 1 + x    ( − 1 < x < 1 ) \sum\limits_{n=0}^\infty (-1)^nx^n=\frac{1}{1+x}\;(-1<x<1) n=0(1)nxn=1+x1(1<x<1)

  例:求下面的级数的和函数:
∑ n = 0 ∞ ( n 2 + 4 n + 3 ) x n \sum\limits_{n=0}^\infty (n^2+4n+3)x^n n=0(n2+4n+3)xn

  解:
    显然,收敛半径   R = 1 \,R=1 R=1.
    当   x = ± 1   \,x=\pm1\, x=±1时,级数发散,故收敛域为: ( − 1 , 1 ) (-1,1) (1,1).
令   s ( x ) = ∑ n = 0 ∞ ( n 2 + 4 n + 3 ) x n = ∑ n = 0 ∞ ( n + 1 ) ( n + 3 ) x n = ∑ n = 0 ∞ ( n + 1 ) ( n + 2 ) x n + ∑ n = 0 ∞ ( n + 1 ) x n 令\,s(x)=\sum\limits_{n=0}^\infty (n^2+4n+3)x^n=\sum\limits_{n=0}^\infty (n+1)(n+3)x^n=\sum\limits_{n=0}^\infty (n+1)(n+2)x^n+\sum\limits_{n=0}^\infty (n+1)x^n s(x)=n=0(n2+4n+3)xn=n=0(n+1)(n+3)xn=n=0(n+1)(n+2)xn+n=0(n+1)xn

    其中,
∑ n = 0 ∞ ( n + 1 ) ( n + 2 ) x n = ( ∑ n = 0 ∞ x n + 2 ) ′ ′ = ( ∑ n = 2 ∞ x n ) ′ ′ = ( ∑ n = 0 ∞ x n − 1 − x ) ′ ′ = 2 ( 1 − x ) 3 \sum\limits_{n=0}^\infty (n+1)(n+2)x^n=\bigg(\sum\limits_{n=0}^\infty x^{n+2}\bigg)''=\bigg(\sum\limits_{n=2}^\infty x^{n}\bigg)''=\bigg(\sum\limits_{n=0}^\infty x^{n}-1-x\bigg)''=\frac{2}{(1-x)^3} n=0(n+1)(n+2)xn=(n=0xn+2)=(n=2xn)=(n=0xn1x)=(1x)32 ∑ n = 0 ∞ ( n + 1 ) x n = ( ∑ n = 0 ∞ x n + 1 ) ′ = ( x 1 − x ) ′ = 1 ( 1 − x ) 2 \sum\limits_{n=0}^\infty (n+1)x^n=\bigg(\sum\limits_{n=0}^\infty x^{n+1}\bigg)'=\bigg(\frac{x}{1-x}\bigg)'=\frac{1}{(1-x)^2} n=0(n+1)xn=(n=0xn+1)=(1xx)=(1x)21

    所以,
s ( x ) = 3 − x ( 1 − x ) 3 s(x)=\frac{3-x}{(1-x)^3} s(x)=(1x)33x

  注意
    (1) 记住下面这个转换,用得非常频繁,即 “ 1   1\, 1减公比分之首项”:
∑ n = k ∞ x n + C = x k + C 1 − x \sum\limits_{n=k}^\infty x^{n+C}=\frac{x^{k+C}}{1-x} n=kxn+C=1xxk+C

    (2) P ( x )   P(x)\, P(x)中若出现   a n   \,a^n\, an作为系数,建议留到最后再处理,不要提前代换. 比如:

∑ n = 0 ∞ n 3 n x n = x ∑ n = 0 ∞ n 3 n x n − 1 = x ( ∑ n = 0 ∞ 3 n x n ) ′ = x ( 1 1 − 3 x ) ′ \sum\limits_{n=0}^\infty n3^nx^n=x\sum\limits_{n=0}^\infty n3^nx^{n-1}=x\bigg(\sum\limits_{n=0}^\infty3^nx^n\bigg)'=x\bigg(\frac{1}{1-3x}\bigg)' n=0n3nxn=xn=0n3nxn1=x(n=03nxn)=x(13x1)

    (3) 遇到   n 2   \,n^2\, n2的拆解方法:
∑ n = 0 ∞ n 2 x n = ∑ n = 0 ∞ [ n ( n − 1 ) + n ] x n \sum\limits_{n=0}^\infty n^2x^n=\sum\limits_{n=0}^\infty[n(n-1)+n]x^n n=0n2xn=n=0[n(n1)+n]xn

    (4) 遇到复杂的有理分式,先拆项再求.

(4) ∑ n = 0 ∞ x n P ( n ) \sum\limits_{n=0}^\infty \frac{x^n}{P(n)} n=0P(n)xn

  思路:将幂级数转化为
∑ n = 0 ∞ ( − 1 ) n − 1 n x n = ln ( 1 + x )    ( − 1 < x ⩽ 1 ) \sum\limits_{n=0}^\infty \frac{(-1)^{n-1}}{n}x^n=\text{ln}(1+x)\;(-1<x\leqslant1) n=0n(1)n1xn=ln(1+x)(1<x1) ∑ n = 0 ∞ x n n = − ln ( 1 − x )    ( − 1 ⩽ x < 1 ) \sum\limits_{n=0}^\infty \frac{x^n}{n}=-\text{ln}{(1-x)}\;(-1\leqslant x<1) n=0nxn=ln(1x)(1x<1)

  例:求下面的级数的和函数:
∑ n = 0 ∞ 1 n ( n + 1 ) x n \sum\limits_{n=0}^\infty \frac{1}{n(n+1)}x^n n=0n(n+1)1xn

  解:
    显然,收敛半径   R = 1 \,R=1 R=1.
    当   x = ± 1   \,x=\pm1\, x=±1时,级数发散,故收敛域为: ( − 1 , 1 ) (-1,1) (1,1).
令   s ( x ) = ∑ n = 0 ∞ ( n 2 + 4 n + 3 ) x n = ∑ n = 0 ∞ ( n + 1 ) ( n + 3 ) x n = ∑ n = 0 ∞ ( n + 1 ) ( n + 2 ) x n + ∑ n = 0 ∞ ( n + 1 ) x n 令\,s(x)=\sum\limits_{n=0}^\infty (n^2+4n+3)x^n=\sum\limits_{n=0}^\infty (n+1)(n+3)x^n=\sum\limits_{n=0}^\infty (n+1)(n+2)x^n+\sum\limits_{n=0}^\infty (n+1)x^n s(x)=n=0(n2+4n+3)xn=n=0(n+1)(n+3)xn=n=0(n+1)(n+2)xn+n=0(n+1)xn

    其中,
∑ n = 0 ∞ ( n + 1 ) ( n + 2 ) x n = ( ∑ n = 0 ∞ x n + 2 ) ′ ′ = ( ∑ n = 2 ∞ x n ) ′ ′ = ( ∑ n = 0 ∞ x n − 1 − x ) ′ ′ = 2 ( 1 − x ) 3 \sum\limits_{n=0}^\infty (n+1)(n+2)x^n=\bigg(\sum\limits_{n=0}^\infty x^{n+2}\bigg)''=\bigg(\sum\limits_{n=2}^\infty x^{n}\bigg)''=\bigg(\sum\limits_{n=0}^\infty x^{n}-1-x\bigg)''=\frac{2}{(1-x)^3} n=0(n+1)(n+2)xn=(n=0xn+2)=(n=2xn)=(n=0xn1x)=(1x)32

∑ n = 0 ∞ ( n + 1 ) x n = ( ∑ n = 0 ∞ x n + 1 ) ′ = ( x 1 − x ) ′ = 1 ( 1 − x ) 2 \sum\limits_{n=0}^\infty (n+1)x^n=\bigg(\sum\limits_{n=0}^\infty x^{n+1}\bigg)'=\bigg(\frac{x}{1-x}\bigg)'=\frac{1}{(1-x)^2} n=0(n+1)xn=(n=0xn+1)=(1xx)=(1x)21

    所以,
s ( x ) = 3 − x ( 1 − x ) 3 s(x)=\frac{3-x}{(1-x)^3} s(x)=(1x)33x

(5) 级数中含阶乘

  思路:考虑将幂级数转化为:

e x = ∑ n = 0 ∞ x n n !        ( − ∞ < x < + ∞ ) e^x=\sum\limits_{n=0}^\infty\frac{x^n}{n!}\;\;\;(-\infty < x < +\infty) ex=n=0n!xn(<x<+) sin x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) !        ( − ∞ < x < + ∞ ) \text{sin}x=\sum\limits_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{(2n+1)!}\;\;\;(-\infty < x < +\infty) sinx=n=0(1)n(2n+1)!x2n+1(<x<+) cos x = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) !        ( − ∞ < x < + ∞ ) \text{cos}x=\sum\limits_{n=0}^\infty(-1)^n\frac{x^{2n}}{(2n)!}\;\;\;(-\infty < x < +\infty) cosx=n=0(1)n(2n)!x2n(<x<+) ( 1 + x ) a = ∑ n = 0 ∞ a ⋅ ( a − 1 ) . . . ( a − n + 1 ) n !   x n        ( − 1 < x < 1 ,   a ∈ R ) (1+x)^a=\sum\limits_{n=0}^\infty\frac{a\cdot(a-1)...(a-n+1)}{n!}\,x^{n}\;\;\;({\color{Blue}{-1< x < 1}},\,a\in \mathbb{R}) (1+x)a=n=0n!a(a1)...(an+1)xn(1<x<1,aR)

(6) a n   a_n\, an未知

  特征:求幂级数   ∑ n = 0 ∞ a n x n \,\sum\limits_{n=0}^\infty a_nx^n n=0anxn,但题目并未直接给出幂级数的   a n \,a_n an.
  思路
    (1) 若   a n   \,a_n\, an可以解出,想尽办法解出.
    (2) 若题目给出幂级数满足的微分方程,直接将   ∑ n = 0 ∞ a n x n   \,\sum\limits_{n=0}^\infty a_nx^n\, n=0anxn代入方程.
    (3) 若题目给出递推表达式,要考虑利用表达式构造微分方程.

  例. ( n + 1 ) a n + 1 = ( n + 1 2 ) a n (n+1)a_{n+1}=(n+\frac{1}{2})a_n (n+1)an+1=(n+21)an,证明:当   ∣ x ∣ < 1   \,|x|<1\, x<1时,下列幂级数收敛并求其和函数:
∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty}a_nx^n n=0anxn

  解:
    显然, lim ⁡ n → ∞ ∣ a n + 1 a n ∣ = 1 ⇒ R = 1 ⇒ ∣ x ∣ < 1   \lim\limits_{n\to\infty}\big|\frac{a_{n+1}}{a_n}\big|=1\Rightarrow R=1\Rightarrow|x|<1\, nlimanan+1=1R=1x<1时收敛,令:

s ( x ) = ∑ n = 1 ∞ a n x n s(x)=\sum_{n=1}^{\infty}a_nx^n s(x)=n=1anxn

    则
s ′ ( x ) = ∑ n = 1 ∞ n a n x n − 1 = 1 + ∑ n = 0 ∞ ( n + 1 ) a n + 1 x n = 1 + ∑ n = 0 ∞ ( n + 1 2 ) a n x n s'(x)=\sum^\infty_{n=1}na_nx^{n-1}=1+\sum^\infty_{n=0}(n+1)a_{n+1}x^{n}=1+\sum^\infty_{n=0}(n+\frac{1}{2})a_nx^{n} s(x)=n=1nanxn1=1+n=0(n+1)an+1xn=1+n=0(n+21)anxn = 1 + ∑ n = 0 ∞ n a n x n + 1 2 ∑ n = 0 ∞ a n x n = 1 + x ∑ n = 0 ∞ n a n x n − 1 + 1 2 ∑ n = 0 ∞ a n x n = 1 + x s ′ ( x ) + 1 2 s ( x ) =1+\sum^\infty_{n=0}na_nx^{n}+\frac{1}{2}\sum^\infty_{n=0}a_nx^{n}=1+x\sum^\infty_{n=0}na_nx^{n-1}+\frac{1}{2}\sum^\infty_{n=0}a_nx^{n}=1+xs'(x)+\frac{1}{2}s(x) =1+n=0nanxn+21n=0anxn=1+xn=0nanxn1+21n=0anxn=1+xs(x)+21s(x)

    即
s ′ ( x ) − 1 2 ( 1 − x ) s ( x ) = 1 1 − x ⇒ s ( x ) = C 1 − x − 2 s'(x)-\frac{1}{2(1-x)}s(x)=\frac{1}{1-x}\Rightarrow s(x)=\frac{C}{\sqrt{1-x}}-2 s(x)2(1x)1s(x)=1x1s(x)=1x C2

    因为   s ( 0 ) = 0 \,s(0)=0 s(0)=0,所以   C = 2 \,C=2 C=2 s ( x ) = 2 1 − x − 2 s(x)=\frac{2}{\sqrt{1-x}}-2 s(x)=1x 22.

(7) 构造微分方程反解和函数

  对于难以使用麦克劳林公式求解和函数的幂级数,可以考虑能否通过构造微分方程求解.

  例. 求下面幂级数的和函数:
∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! ! = 1 − x 2 2 + x 4 2 ⋅ 4 − x 6 2 ⋅ 4 ⋅ 6 + . . . \sum\limits_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!!}=1-\frac{x^2}{2}+\frac{x^4}{2\cdot 4}-\frac{x^6}{2\cdot4\cdot6}+... n=0(1)n(2n)!!x2n=12x2+24x4246x6+...

  解:令   s ( x ) = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! ! \,s(x)=\sum\limits_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!!} s(x)=n=0(1)n(2n)!!x2n
     则
s ′ ( x ) = ∑ n = 1 ∞ ( − 1 ) n x 2 n − 1 ( 2 n − 2 ) ! ! = ∑ n = 0 ∞ ( − 1 ) n + 1 x 2 n + 1 ( 2 n ) ! ! = − x ⋅ s ( x ) s'(x)=\sum\limits_{n=1}^{\infty}(-1)^n\frac{x^{2n-1}}{(2n-2)!!}=\sum\limits_{n=0}^{\infty}(-1)^{n+1}\frac{x^{2n+1}}{(2n)!!}=-x\cdot s(x) s(x)=n=1(1)n(2n2)!!x2n1=n=0(1)n+1(2n)!!x2n+1=xs(x)     于是有:
{ s ′ ( x ) + x s ( x ) = 0 s ( 0 ) = 1 ⇒ s ( x ) = e − 1 2 x 2 \begin{cases}s'(x)+xs(x)=0\\s(0)=1\end{cases}\Rightarrow s(x)=e^{-{\frac{1}{2}x^2}} {s(x)+xs(x)=0s(0)=1s(x)=e21x2

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值