文章目录
- 记忆内容
- 1 基本概念
- 2 幂级数基本定理
- 3 幂级数的分析性质
- 4 函数的幂级数展开
- 5 求幂级数的和函数
记忆内容
1 基本概念
(1) 函数项级数 - ∑ n = 1 ∞ u n ( x ) \,\sum\limits_{n=1}^\infty u_n(x)\, n=1∑∞un(x)
定义:
设
{
u
n
(
x
)
}
\,\{u_n(x)\}\,
{un(x)}为函数列,称
∑
n
=
1
∞
u
n
(
x
)
\,\sum\limits_{n=1}^\infty u_n(x)\,
n=1∑∞un(x)为函数项级数.
∑
n
=
1
∞
u
n
(
x
)
=
u
1
(
x
)
+
u
2
(
x
)
+
u
3
(
x
)
+
.
.
.
+
u
n
(
x
)
+
.
.
.
\sum\limits_{n=1}^\infty u_n(x)=u_1(x)+u_2(x)+u_3(x)+...+u_n(x)+...
n=1∑∞un(x)=u1(x)+u2(x)+u3(x)+...+un(x)+...
注意:当 x = x 0 \,x=x_0\, x=x0时, ∑ n = 1 ∞ u n ( x 0 ) \,\sum\limits_{n=1}^\infty u_n(x_0)\, n=1∑∞un(x0)为常数项级数.
收敛点 / 发散点:若常数项级数 ∑ n = 1 ∞ u n ( x 0 ) \,\sum\limits_{n=1}^\infty u_n(x_0)\, n=1∑∞un(x0)收敛(发散),则称 x 0 \,x_0\, x0是函数项级数 ∑ n = 1 ∞ u n ( x 0 ) \,\sum\limits_{n=1}^\infty u_n(x_0)\, n=1∑∞un(x0)的收敛点(发散点).
收敛域 / 发散域:函数项级数 ∑ n = 1 ∞ u n ( x ) \,\sum\limits_{n=1}^\infty u_n(x)\, n=1∑∞un(x)收敛点(发散点)的全体.
收敛区间:不含端点的收敛域: ( − R , R ) (-R,\,R) (−R,R).
部分和 -
s
n
(
x
)
s_n(x)
sn(x):
即
∑
n
=
1
∞
u
n
(
x
)
\sum\limits_{n=1}^\infty u_n(x)\,
n=1∑∞un(x)的前
n
\,n\,
n项之和.
s
n
(
x
)
=
u
1
(
x
)
+
u
2
(
x
)
+
u
3
(
x
)
+
.
.
.
+
u
n
(
x
)
s_n(x)=u_1(x)+u_2(x)+u_3(x)+...+u_n(x)
sn(x)=u1(x)+u2(x)+u3(x)+...+un(x)
和函数 -
s
(
x
)
s(x)
s(x):
s
(
x
)
=
u
1
(
x
)
+
u
2
(
x
)
+
u
3
(
x
)
+
.
.
.
+
u
n
(
x
)
+
.
.
.
s(x)=u_1(x)+u_2(x)+u_3(x)+...+u_n(x)+...
s(x)=u1(x)+u2(x)+u3(x)+...+un(x)+...
部分和与和函数的关系:
lim
n
→
∞
s
n
(
x
)
=
s
(
x
)
\lim\limits_{n\to\infty}s_n(x)=s(x)
n→∞limsn(x)=s(x)
余项 -
r
n
(
x
)
r_n(x)
rn(x):
r
n
(
x
)
=
s
(
x
)
−
s
n
(
x
)
r_n(x)=s(x)-s_n(x)
rn(x)=s(x)−sn(x)
lim n → ∞ r n ( x ) = 0 \lim\limits_{n\to\infty}r_n(x)=0 n→∞limrn(x)=0
注意:只有 x \,x\, x在收敛域上, r n ( x ) \,r_n(x)\, rn(x)才有意义.
(2) 幂级数 - ∑ n = 0 ∞ a n x n \,\sum\limits_{n=0}^\infty a_n x^n\, n=0∑∞anxn
定义:
幂级数是具有以下形式的函数项级数:
∑
n
=
0
∞
a
n
x
n
=
a
0
+
a
1
x
+
a
2
x
2
+
.
.
.
+
a
n
x
n
+
.
.
.
\sum\limits_{n=0}^\infty a_n x^n=a_0+a_1x+a_2x^2+...+a_nx^n+...
n=0∑∞anxn=a0+a1x+a2x2+...+anxn+...
注意:
(1)
∑
n
=
0
∞
a
n
(
x
−
x
0
)
n
\sum\limits_{n=0}^\infty a_n(x-x_0)^n\,
n=0∑∞an(x−x0)n是幂级数的一般形式,但可以作代换
t
=
x
−
x
0
\,t=x-x_0\,
t=x−x0化为上面的标准形式. 题目出现这种形式时也是考虑先代换,转化为
∑
n
=
0
∞
a
n
x
n
\,\sum\limits_{n=0}^\infty a_n x^n\,
n=0∑∞anxn.
(2)
a
0
,
a
1
,
a
2
,
.
.
.
,
a
n
,
.
.
.
a_0,\,a_1,\,a_2,...,a_n,...\,
a0,a1,a2,...,an,...称为幂级数的系数.
(3) 泰勒公式的级数形式:
f
(
x
)
=
∑
n
=
0
∞
a
n
(
x
−
x
0
)
n
f(x)=\sum\limits_{n=0}^\infty a_n(x-x_0)^n
f(x)=n=0∑∞an(x−x0)n
2 幂级数基本定理
(一) 阿贝尔定理 ( Abel \text{Abel} Abel)
对幂级数
∑
n
=
0
∞
a
n
x
n
\,\sum\limits_{n=0}^\infty a_n x^n\,
n=0∑∞anxn,
a) 若存在
x
0
≠
0
\,x_0\neq 0
x0=0,使得
∑
n
=
0
∞
a
n
x
0
n
\,\sum\limits_{n=0}^\infty a_n x_0^n\,
n=0∑∞anx0n收敛,则当
∣
x
∣
<
∣
x
0
∣
\,|x|<|x_0|\,
∣x∣<∣x0∣时,
∑
n
=
0
∞
a
n
x
n
\,\sum\limits_{n=0}^\infty a_n x^n\,
n=0∑∞anxn绝对收敛;
b) 若存在
x
1
≠
0
\,x_1\neq 0
x1=0,使得
∑
n
=
0
∞
a
n
x
1
n
\,\sum\limits_{n=0}^\infty a_n x_1^n\,
n=0∑∞anx1n发散,则当
∣
x
∣
>
∣
x
1
∣
\,|x|>|x_1|\,
∣x∣>∣x1∣时,
∑
n
=
0
∞
a
n
x
n
\,\sum\limits_{n=0}^\infty a_n x^n\,
n=0∑∞anxn发散;
!
\color{Red}!\,
!推论:
对幂级数
∑
n
=
0
∞
a
n
x
n
\,\sum\limits_{n=0}^\infty a_n x^n\,
n=0∑∞anxn,
∃
R
>
0
\exist\,R>0\,
∃R>0(
R
R\,
R称为收敛半径),
a)
∣
x
∣
<
R
\;|x|<R\,
∣x∣<R即
x
∈
(
−
R
,
R
)
\,\color{Blue}x\in(-R,R)
x∈(−R,R),幂级数绝对收敛;
b)
∣
x
∣
>
R
\;|x|>R\,
∣x∣>R即
x
<
−
R
\,\color{Blue}x<-R\,
x<−R或
x
>
R
\,\color{Blue}x>R
x>R,幂级数发散;
c)
x
=
±
R
\;\color{Blue}x=\pm R\,
x=±R,幂级数可能收敛也可能发散.
注意:
(1) 由此可见,幂级数的条件收敛只有可能发生在端点.
(2) 端点处是否属于收敛域需要单独考虑,通过判断将端点代入幂级数得到的常数项级数的敛散性确定.
(二) 收敛半径定理和相关问题
通过下面两个定理可以确定收敛半径 R \,R R.
定理1
对幂级数
∑
n
=
0
∞
a
n
x
n
\,\sum\limits_{n=0}^\infty a_n x^n
n=0∑∞anxn,设
lim
n
→
∞
∣
a
n
+
1
a
n
∣
=
ρ
\,\color{Blue}\lim\limits_{n\to\infty}|\frac{a_{n+1}}{a_{n}}|=\rho
n→∞lim∣anan+1∣=ρ,则
(1) 若
ρ
=
0
\,\rho=0
ρ=0,则
R
=
+
∞
\,R=+\infty
R=+∞;
(2) 若 ρ = + ∞ \,\rho=+\infty ρ=+∞,则 R = 0 \,R=0\, R=0;
(3) 若 0 < ρ < + ∞ \,0<\rho<+\infty 0<ρ<+∞,则 R = 1 ρ \,R=\frac{1}{\rho} R=ρ1.
定理2
对幂级数
∑
n
=
0
∞
a
n
x
n
\,\sum\limits_{n=0}^\infty a_n x^n
n=0∑∞anxn,设
lim
n
→
∞
∣
a
n
∣
n
=
ρ
\,\color{Blue}\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}=\rho
n→∞limn∣an∣=ρ,则
(1) 若
ρ
=
0
\,\rho=0
ρ=0,则
R
=
+
∞
\,R=+\infty
R=+∞;
(2) 若 ρ = + ∞ \,\rho=+\infty ρ=+∞,则 R = 0 \,R=0\, R=0;
(3) 若 0 < ρ < + ∞ \,0<\rho<+\infty 0<ρ<+∞,则 R = 1 ρ \,R=\frac{1}{\rho} R=ρ1.
补充说明
(1) 若幂级数表示为
∑
n
=
0
∞
a
n
x
k
n
+
c
(
k
>
0
,
c
⩾
0
)
\,\sum\limits_{n=0}^\infty a_n x^{{\color{Red}k}n+c}\;(k>0,c\geqslant0)
n=0∑∞anxkn+c(k>0,c⩾0),其收敛半径为
R
′
\,R'
R′,则
1
R
=
lim
n
→
∞
∣
a
n
+
1
a
n
∣
=
ρ
⇒
R
′
=
R
k
=
1
ρ
k
\frac{1}{R}=\lim\limits_{n\to\infty}\bigg|\frac{a_{n+1}}{a_{n}}\bigg|=\rho\Rightarrow R'=\sqrt[\color{Red}k]{R}=\sqrt[\color{Red}k]{\frac{1}{\rho}}
R1=n→∞lim∣∣∣∣anan+1∣∣∣∣=ρ⇒R′=kR=kρ1
1 R = lim n → ∞ ∣ a n ∣ n = ρ ⇒ R ′ = R k = 1 ρ k \frac{1}{R}=\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}=\rho\Rightarrow R'=\sqrt[\color{Red}k]{R}=\sqrt[\color{Red}k]{\frac{1}{\rho}} R1=n→∞limn∣an∣=ρ⇒R′=kR=kρ1
(2) 对于幂级数 ∑ n = 0 ∞ a n ( x − x 0 ) n \,\sum\limits_{n=0}^\infty a_n (x-x_0)^n n=0∑∞an(x−x0)n,其收敛域是以 x 0 \,x_0\, x0为中心且包含 ( x 0 − R , x 0 + R ) \,(x_0-R,\,x_0+R)\, (x0−R,x0+R)的区间 (端点情况单独考虑).
(3) 在幂级数中, ( − 1 ) n (-1)^n\, (−1)n是包含在 a n \,a_n\, an中的 (这与交错级数不同),计算收敛半径时不要漏掉.
问题1. 求收敛域
标准步骤:
(1) 求收敛半径,得到收敛区间 (开区间).
(2) 判断端点敛散性,得到收敛域.
如果对收敛区间分析感到困难,可以考虑使用下面这种方法:
收敛区间快速求法:
(1) 对于 ∑ u n ( x ) \,\sum u_n(x) ∑un(x),加绝对值使之成为正项级数 ∑ ∣ u n ( x ) ∣ \,\sum|u_n(x)| ∑∣un(x)∣.
(2) 使用比值审敛法(或根值审敛法),令: { lim n → ∞ ∣ u n + 1 ( x ) ∣ ∣ u n ( x ) ∣ < 1 lim n → ∞ ∣ u n ( x ) ∣ n < 1 , \begin{cases}\lim\limits_{n\to\infty}\frac{|u_{n+1}(x)|}{|u_n{(x)}|}<1\\ \lim\limits_{n\to\infty}\sqrt[n]{|u_n(x)|}<1\end{cases}, ⎩⎨⎧n→∞lim∣un(x)∣∣un+1(x)∣<1n→∞limn∣un(x)∣<1, 解出 x \,x\, x的范围,即为收敛区间.
细节问题:对于(1),收敛半径通常对级数直接使用收敛半径定理即可解得. 但有时级数比较复杂,定理1、定理2计算不出. 应该考虑能否对级数进行拆分,分别考虑最后再取交集. 下面给出其中一种非常重要的拆分思路:
奇偶拆分:
以求
∑
n
=
1
∞
[
3
+
(
−
1
)
n
]
n
n
x
n
\,\sum\limits_{n=1}^{\infty}\frac{[3+(-1)^n]^n}{n}x^n\,
n=1∑∞n[3+(−1)n]nxn的收敛区间为例:
∑
n
=
1
∞
[
3
+
(
−
1
)
n
]
n
n
x
n
=
∑
n
=
1
∞
4
2
n
2
n
x
2
n
+
∑
n
=
1
∞
2
2
n
−
1
2
n
−
1
x
2
n
−
1
\sum\limits_{n=1}^{\infty}\frac{[3+(-1)^n]^n}{n}x^n=\sum\limits_{n=1}^{\infty}\frac{4^{2n}}{2n}x^{2n}+\sum\limits_{n=1}^{\infty}\frac{2^{2n-1}}{2n-1}x^{2n-1}
n=1∑∞n[3+(−1)n]nxn=n=1∑∞2n42nx2n+n=1∑∞2n−122n−1x2n−1
∑ n = 1 ∞ 4 2 n 2 n x 2 n ⇒ ( − 1 2 , 1 2 ) \sum\limits_{n=1}^{\infty}\frac{4^{2n}}{2n}x^{2n}\Rightarrow(-\frac{1}{2},\,\frac{1}{2}) n=1∑∞2n42nx2n⇒(−21,21)
∑ n = 1 ∞ 2 2 n − 1 2 n − 1 x 2 n − 1 ⇒ ( − 1 4 , 1 4 ) \sum\limits_{n=1}^{\infty}\frac{2^{2n-1}}{2n-1}x^{2n-1}\Rightarrow(-\frac{1}{4},\,\frac{1}{4}) n=1∑∞2n−122n−1x2n−1⇒(−41,41)
⇒ ( − 1 4 , 1 4 ) \Rightarrow (-\frac{1}{4},\,\frac{1}{4}) ⇒(−41,41)
读者可以再考虑: ∑ n = 1 ∞ 2 + ( − 1 ) n n x n \,\sum\limits_{n=1}^{\infty}\frac{2+(-1)^n}{n}x^n n=1∑∞n2+(−1)nxn.
问题2. 根据收敛点或发散点判断收敛域
对于幂级数:
∑
n
=
0
∞
a
n
⋅
x
n
\sum\limits_{n=0}^{\infty}a_n\cdot x^n
n=0∑∞an⋅xn
首先明确一个事实:收敛区间必定关于 x = 0 \,x=0\, x=0中心对称,必定以 ( − R , R ) \,(-R,R)\, (−R,R)或 ( − ∞ , + ∞ ) \,(-\infty,+\infty)\, (−∞,+∞)二者之一的形式出现.
有以下几个的结论:
(1) 若已知该幂级数在
x
=
x
1
\,x=x_1\,
x=x1收敛,说明:
至少在
(
−
x
1
,
x
1
]
\,(-x_1,\,x_1]\,
(−x1,x1]这个区间内幂级数是收敛的;
在区间
(
−
x
1
−
Δ
x
,
x
1
+
Δ
x
)
\,(-x_1-\Delta x,x_1+\Delta x)\,
(−x1−Δx,x1+Δx)内幂级数可能还收敛;
x
=
−
x
1
x=-x_1\,
x=−x1是否收敛不能确定.
R
⩾
x
1
\,R\geqslant x_1
R⩾x1;
(2) 若该幂级数在
x
=
x
2
\,x=x_2\,
x=x2发散,说明:
至多在
[
−
x
2
,
x
2
)
\,[-x_2,\,x_2)\,
[−x2,x2)这个区间内幂级数是收敛的;
在区间
(
−
x
2
+
Δ
x
,
x
2
−
Δ
x
)
\,(-x_2+\Delta x,x_2-\Delta x)\,
(−x2+Δx,x2−Δx)内幂级数可能还发散;
x
=
−
x
2
x=-x_2\,
x=−x2是否收敛不能确定.
R
⩽
x
2
\,R\leqslant x_2
R⩽x2;
而对于幂级数:
∑
n
=
0
∞
a
n
⋅
(
x
−
x
0
)
n
\sum\limits_{n=0}^{\infty}a_n\cdot (x-x_0)^n
n=0∑∞an⋅(x−x0)n
首先作代换,令
t
=
x
−
x
0
⇒
x
=
t
+
x
0
\,t=x-x_0\Rightarrow x=t+x_0
t=x−x0⇒x=t+x0.
则收敛域必然关于
t
=
0
\,t=0\,
t=0对称,问题就转化为
∑
n
=
0
∞
a
n
⋅
t
n
\,\sum\limits_{n=0}^{\infty}a_n\cdot t^n\,
n=0∑∞an⋅tn的收敛半径问题了.
更一般的,下面这种级数的收敛半径也能判断:
∑
n
=
0
∞
a
n
⋅
(
a
x
+
b
)
n
(
a
≠
0
)
\sum\limits_{n=0}^{\infty}a_n\cdot (ax+b)^n\;\;(a\neq 0)
n=0∑∞an⋅(ax+b)n(a=0)
令 t = a x + b \,t=ax+b t=ax+b,即可进行判断.
例. 设级数 ∑ n = 0 ∞ a n ( 2 x − 1 ) n \,\sum\limits_{n=0}^{\infty}a_n(2x-1)^n\, n=0∑∞an(2x−1)n在 x = − 2 \,x=-2\, x=−2处收敛,在 x = 3 \,x=3\, x=3处发散,求收敛半径.
解.
令 t = 2 x − 1 \,t=2x-1 t=2x−1,则有 ∑ n = 0 ∞ a n t n \,\sum\limits_{n=0}^{\infty}a_nt^n\, n=0∑∞antn收敛区间关于原点对称.
因为级数在 x = − 2 \,x=-2\, x=−2处收敛,即 t = − 5 \,t=-5\, t=−5处收敛,所以 R ⩾ 5 \,R\geqslant5 R⩾5;
因为级数在 x = 3 \,x=3\, x=3处发散,即 t = 5 \,t=5\, t=5处发散,所以 R ⩽ 5 \,R\leqslant5 R⩽5;
综上: R = 5 R=5 R=5.
问题3. 根据幂级数的收敛半径推另一个幂级数的收敛半径
已知收敛半径为
R
\,R\,
R的幂级数:
∑
n
=
0
∞
a
n
⋅
x
n
\sum\limits_{n=0}^{\infty}a_n\cdot x^n
n=0∑∞an⋅xn
主要有两种思路:
(1) 使用逐项可积性和逐项可导性(见幂级数的分析性质),收敛半径不变. 即这三者收敛半径都为
R
\,R\,
R:
∑
n
=
0
∞
a
n
⋅
x
n
,
∑
n
=
0
∞
n
a
n
x
n
−
1
,
∑
n
=
0
∞
a
n
n
+
1
x
n
+
1
\sum\limits_{n=0}^{\infty}a_n\cdot x^n,\sum\limits_{n=0}^\infty na_n x^{n-1},\sum\limits_{n=0}^\infty \frac{a_n}{n+1}x^{n+1}
n=0∑∞an⋅xn,n=0∑∞nanxn−1,n=0∑∞n+1anxn+1
(2) 另一个幂级数为 ∑ n = 0 ∞ a n x k n + c ( k > 0 , c ⩾ 0 ) \,\sum\limits_{n=0}^\infty a_n x^{{\color{Red}k}n+c}\;(k>0,c\geqslant0) n=0∑∞anxkn+c(k>0,c⩾0),收敛半径为 R ′ \,R' R′,则:
1 R = lim n → ∞ ∣ a n + 1 a n ∣ = ρ ⇒ R ′ = R k = 1 ρ k \frac{1}{R}=\lim\limits_{n\to\infty}\bigg|\frac{a_{n+1}}{a_{n}}\bigg|=\rho\Rightarrow R'=\sqrt[\color{Red}k]{R}=\sqrt[\color{Red}k]{\frac{1}{\rho}} R1=n→∞lim∣∣∣∣anan+1∣∣∣∣=ρ⇒R′=kR=kρ1
或
1
R
=
lim
n
→
∞
∣
a
n
∣
n
=
ρ
⇒
R
′
=
R
k
=
1
ρ
k
\frac{1}{R}=\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}=\rho\Rightarrow R'=\sqrt[\color{Red}k]{R}=\sqrt[\color{Red}k]{\frac{1}{\rho}}
R1=n→∞limn∣an∣=ρ⇒R′=kR=kρ1
3 幂级数的分析性质
(1) 连续性质
和函数 s ( x ) \,s(x)\, s(x)在 ( − R , R ) \,(-R,R)\, (−R,R)内连续.
(2) 逐项可导性
当
x
∈
(
−
R
,
R
)
\,x\in(-R,R)\,
x∈(−R,R)时,
s
′
(
x
)
=
(
∑
n
=
0
∞
a
n
x
n
)
′
=
∑
n
=
0
∞
n
a
n
x
n
−
1
s'(x)=(\sum\limits_{n=0}^\infty a_n x^n)'=\sum\limits_{n=0}^\infty na_n x^{n-1}
s′(x)=(n=0∑∞anxn)′=n=0∑∞nanxn−1
且 ∑ n = 0 ∞ n a n x n − 1 \,\sum\limits_{n=0}^\infty na_n x^{n-1}\, n=0∑∞nanxn−1的收敛半径也是 R \,R R.
注意:
(1) 逐项求导不改变收敛半径,但收敛域可能变大,也可能缩小(视求导后端点处的敛散性而定).
(2) 反复使用逐项可导性可以得出:和函数
s
(
x
)
\,s(x)\,
s(x)在
(
−
R
,
R
)
\,(-R,R)\,
(−R,R)内具有任意阶导数.
(3) 逐项可积性
当
x
∈
(
−
R
,
R
)
\,x\in(-R,R)\,
x∈(−R,R)时,
∫
0
x
s
(
x
)
d
x
=
∫
0
x
(
∑
n
=
0
∞
a
n
x
n
)
d
x
=
∑
n
=
0
∞
∫
0
x
a
n
x
n
d
x
=
∑
n
=
0
∞
a
n
n
+
1
x
n
+
1
\int^x_0s(x)\text{d}x=\int^x_0(\sum\limits_{n=0}^\infty a_n x^n)\text{d}x=\sum\limits_{n=0}^\infty\int_0^x a_n x^n\text{d}x=\sum\limits_{n=0}^\infty \frac{a_n}{n+1}x^{n+1}
∫0xs(x)dx=∫0x(n=0∑∞anxn)dx=n=0∑∞∫0xanxndx=n=0∑∞n+1anxn+1
且 ∑ n = 0 ∞ a n n + 1 x n + 1 \,\sum\limits_{n=0}^\infty \frac{a_n}{n+1}x^{n+1}\, n=0∑∞n+1anxn+1的收敛半径也是 R \,R R.
注意:逐项求积分不改变收敛半径,但收敛域可能变大,也可能缩小(视求积分后端点处的敛散性而定).
(4) 变换与拆项
下标增减变换
技巧:下标和通项中的
n
\,n\,
n变化是相反的,
下标减多少,通项就加多少;下标加多少,通项就减多少.
通用思路:换元法,下面看两个例子:
(1) 将下标
i
\,i\,
i变成从
0
\,0\,
0开始:
∑
n
=
i
∞
x
n
=
∑
n
=
0
∞
x
n
+
i
\sum\limits_{n=\color{Blue}i}^\infty x^{\color{Purple}n}=\sum\limits_{n=\color{Blue}0}^\infty x^{\color{Purple}n+i}
n=i∑∞xn=n=0∑∞xn+i
∑ n = i ∞ x 2 n + c = ∑ n = 0 ∞ x 2 ( n + i ) + c \sum\limits_{n=\color{Blue}i}^\infty x^{\color{Purple}2n+c}=\sum\limits_{n=\color{Blue}0}^\infty x^{\color{Purple}2(n+i)+c} n=i∑∞x2n+c=n=0∑∞x2(n+i)+c
推导:令 t = n − i \,t=n-i\, t=n−i,则 n = i + t \,n=i+t\, n=i+t
∑ n = i ∞ x n = ∑ t = 0 ∞ x i + t = ∑ n = 0 ∞ x n + i \sum\limits_{n=\color{Blue}i}^\infty x^n=\sum\limits_{t=\color{Blue}0}^\infty x^{i+t} =\sum\limits_{n=\color{Blue}0}^\infty x^{n+i} n=i∑∞xn=t=0∑∞xi+t=n=0∑∞xn+i
(2) 将次数
n
+
i
\,n+i\,
n+i改为
n
\,n\,
n:
∑
n
=
k
∞
x
n
+
i
=
∑
n
=
k
+
i
∞
x
n
\sum\limits_{n=\color{Purple}k}^\infty x^{\color{Blue}n+i}=\sum\limits_{n=\color{Purple}k+i}^\infty x^{\color{Blue}n}
n=k∑∞xn+i=n=k+i∑∞xn
推导:令 t = n + i \,t=n+i\, t=n+i,则 n = t − i \,n=t-i\, n=t−i
∑ n = k ∞ x n + i = ∑ t = k + i ∞ x t = ∑ n = k + i ∞ x n \sum\limits_{n=\color{Purple}k}^\infty x^{\color{Blue}n+i}=\sum\limits_{t=\color{Purple}k+i}^\infty x^{\color{Blue}t}=\sum\limits_{n=\color{Purple}k+i}^\infty x^{\color{Blue}n} n=k∑∞xn+i=t=k+i∑∞xt=n=k+i∑∞xn
k k\, k阶导的等价下标变换
2
2\,
2阶导:
(
∑
n
=
0
∞
x
n
)
′
′
=
(
∑
n
=
1
∞
x
n
)
′
′
=
(
∑
n
=
2
∞
x
n
)
′
′
\bigg(\sum\limits_{n=\color{Blue}0}^\infty x^n\bigg)''=\bigg(\sum\limits_{n=\color{Blue}1}^\infty x^n\bigg)''=\bigg(\sum\limits_{n=\color{Blue}2}^\infty x^n\bigg)''
(n=0∑∞xn)′′=(n=1∑∞xn)′′=(n=2∑∞xn)′′
k
k\,
k阶导:
(
∑
n
=
0
∞
x
n
)
(
k
)
=
(
∑
n
=
1
∞
x
n
)
(
k
)
=
.
.
.
=
(
∑
n
=
k
∞
x
n
)
(
k
)
\bigg(\sum\limits_{n=\color{Blue}0}^\infty x^n\bigg)^{(k)}=\bigg(\sum\limits_{n=\color{Blue}1}^\infty x^n\bigg)^{(k)}=...=\bigg(\sum\limits_{n=\color{Blue}k}^\infty x^n\bigg)^{(k)}
(n=0∑∞xn)(k)=(n=1∑∞xn)(k)=...=(n=k∑∞xn)(k)
拆项和补项
在计算过程中,适当的拆项或补项可能减少很大的计算量.
∑
n
=
0
∞
x
n
=
1
+
∑
n
=
1
∞
x
n
=
1
+
x
+
∑
n
=
2
∞
x
n
=
.
.
.
.
=
1
+
x
+
.
.
.
+
x
k
−
1
+
∑
n
=
k
∞
x
n
\sum\limits_{n=\color{Blue}0}^\infty x^{n}=1+\sum\limits_{n=\color{Blue}1}^\infty x^{n}=1+x+\sum\limits_{n=\color{Blue}2}^\infty x^{n}=....=1+x+...+x^{k-1}+\sum\limits_{n=\color{Blue}k}^\infty x^{n}
n=0∑∞xn=1+n=1∑∞xn=1+x+n=2∑∞xn=....=1+x+...+xk−1+n=k∑∞xn
∑ n = k ∞ x n = ∑ n = k − 1 ∞ x n − x k − 1 = . . . = ∑ n = 1 ∞ x n − x k − 1 − x k − 2 − . . . − x = ∑ n = 0 ∞ x n − x k − 1 − x k − 2 . . . − 1 \sum\limits_{n=\color{Blue}k}^\infty x^{n}=\sum\limits_{n=\color{Blue}k-1}^\infty x^{n}-x^{k-1}=...=\sum\limits_{n=\color{Blue}1}^\infty x^{n}-x^{k-1}-x^{k-2}-...-x=\sum\limits_{n=\color{Blue}0}^\infty x^{n}-x^{k-1}-x^{k-2}...-1 n=k∑∞xn=n=k−1∑∞xn−xk−1=...=n=1∑∞xn−xk−1−xk−2−...−x=n=0∑∞xn−xk−1−xk−2...−1
综合运用
考虑将下面的两个级数之和整理为一个级数表示:
I = ∑ n = 0 ∞ ( − 1 ) n x 2 n 2 n + 1 + ∑ n = 0 ∞ ( − 1 ) n x 2 n + 2 2 n + 1 I=\sum\limits_{n=0}^\infty(-1)^n\frac{x^{2n}}{2n+1}+\sum\limits_{n=0}^\infty(-1)^n\frac{x^{2n+2}}{2n+1} I=n=0∑∞(−1)n2n+1x2n+n=0∑∞(−1)n2n+1x2n+2对两个级数分别进行拆项和下标变换:
I = 1 + ∑ n = 1 ∞ ( − 1 ) n x 2 n 2 n + 1 + ∑ n = 1 ∞ ( − 1 ) n − 1 x 2 n 2 n − 1 = 1 + 2 ∑ n = 1 ∞ ( − 1 ) n 1 − 4 n 2 x 2 n I=1+\sum\limits_{n=1}^\infty(-1)^n\frac{x^{2n}}{2n+1}+\sum\limits_{n=1}^\infty(-1)^{n-1}\frac{x^{2n}}{2n-1}=1+2\sum\limits_{n=1}^\infty\frac{(-1)^n}{1-4n^2}x^{2n} I=1+n=1∑∞(−1)n2n+1x2n+n=1∑∞(−1)n−12n−1x2n=1+2n=1∑∞1−4n2(−1)nx2n
4 函数的幂级数展开
设函数 f ( x ) \,f(x)\, f(x)在 x = x 0 \,x=x_0\, x=x0的邻域内任意阶可到,则 f ( x ) \,f(x)\, f(x)在 x = x 0 \,x=x_0\, x=x0可以展开成幂级数为:
f ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n f(x)=\sum\limits_{n=0}^\infty \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n f(x)=n=0∑∞n!f(n)(x0)(x−x0)n
称 ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n \,\sum\limits_{n=0}^\infty \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n\, n=0∑∞n!f(n)(x0)(x−x0)n为 f ( x ) \,f(x)\, f(x)的泰勒级数.
特别地,若 x 0 = 0 \,x_0=0 x0=0,称 ∑ n = 0 ∞ f ( n ) ( 0 ) n ! x n \,\sum\limits_{n=0}^\infty \frac{f^{(n)}(0)}{n!}x^n\, n=0∑∞n!f(n)(0)xn为 f ( x ) \,f(x)\, f(x)的麦克劳林级数.
注意:泰勒级数和泰勒展开式不是同一个概念. 泰勒级数额外带有级数的性质 (比如余项的极限为 0 \,0\, 0).
基本思路:
(1) 展开方法:直接展开法、间接展开法.
(2) 工具:
a) 常见函数的麦克劳林级数.
b) 幂级数的运算(四则运算、逐项求导、逐项积分)及变量代换等.
(3) 过程:
a) 根据类型进行展开;
b) 确定收敛区间;
c) 讨论端点敛散性,确定最终收敛域;
注意:任何情况最后都要讨论端点的敛散性! (除非端点不在定义域内).
(一) 常见函数的麦克劳林级数
以下麦克劳林级数需要熟练记忆:
e
x
=
∑
n
=
0
∞
x
n
n
!
(
−
∞
<
x
<
+
∞
)
e^x=\sum\limits_{n=0}^\infty\frac{x^n}{n!}\;\;\;(-\infty < x < +\infty)
ex=n=0∑∞n!xn(−∞<x<+∞)
1
1
−
x
=
∑
n
=
0
∞
x
n
(
−
1
<
x
<
1
)
\frac{1}{1-x}=\sum\limits_{n=0}^\infty x^n\;\;\;\color{Blue}(-1 < x < 1)
1−x1=n=0∑∞xn(−1<x<1)
1
1
+
x
=
∑
n
=
0
∞
(
−
1
)
n
x
n
(
−
1
<
x
<
1
)
\frac{1}{1+x}=\sum\limits_{n=0}^\infty(-1)^nx^n\;\;\;\color{Blue}(-1 < x < 1)
1+x1=n=0∑∞(−1)nxn(−1<x<1)
sin
x
=
∑
n
=
0
∞
(
−
1
)
n
x
2
n
+
1
(
2
n
+
1
)
!
(
−
∞
<
x
<
+
∞
)
\text{sin}x=\sum\limits_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{(2n+1)!}\;\;\;(-\infty < x < +\infty)
sinx=n=0∑∞(−1)n(2n+1)!x2n+1(−∞<x<+∞)
cos
x
=
∑
n
=
0
∞
(
−
1
)
n
x
2
n
(
2
n
)
!
(
−
∞
<
x
<
+
∞
)
\text{cos}x=\sum\limits_{n=0}^\infty(-1)^n\frac{x^{2n}}{(2n)!}\;\;\;(-\infty < x < +\infty)
cosx=n=0∑∞(−1)n(2n)!x2n(−∞<x<+∞)
ln
(
1
+
x
)
=
∑
n
=
1
∞
(
−
1
)
n
−
1
x
n
n
(
−
1
<
x
⩽
1
)
\text{ln}(1+x)=\sum\limits_{\color{Blue}n=1}^\infty(-1)^{\color{Red}{n-1}}\frac{x^n}{n}\;\;\;\color{Blue}(-1 < x \leqslant 1)
ln(1+x)=n=1∑∞(−1)n−1nxn(−1<x⩽1)
−
ln
(
1
−
x
)
=
∑
n
=
1
∞
x
n
n
(
−
1
⩽
x
<
1
)
-\text{ln}(1-x)=\sum\limits_{\color{Blue}n=1}^\infty\frac{x^n}{n}\;\;\;\color{Blue}(-1 \leqslant x < 1)
−ln(1−x)=n=1∑∞nxn(−1⩽x<1)
arctan
x
=
∑
n
=
0
∞
(
−
1
)
n
x
2
n
+
1
2
n
+
1
(
−
1
⩽
x
⩽
1
)
\text{arctan}x=\sum\limits_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{2n+1}\;\;\;\color{Blue}(-1 \leqslant x \leqslant 1)
arctanx=n=0∑∞(−1)n2n+1x2n+1(−1⩽x⩽1)
(
1
+
x
)
a
=
∑
n
=
0
∞
a
⋅
(
a
−
1
)
.
.
.
(
a
−
n
+
1
)
n
!
x
n
(
只
考
−
1
<
x
<
1
,
a
∈
R
)
(1+x)^a=\sum\limits_{n=0}^\infty\frac{a\cdot(a-1)...(a-n+1)}{n!}\,x^{n}\;\;\;(只考\,{\color{Blue}{-1< x < 1}},\,a\in \mathbb{R})
(1+x)a=n=0∑∞n!a⋅(a−1)...(a−n+1)xn(只考−1<x<1,a∈R)
a
x
=
e
x
ln
a
=
∑
n
=
0
∞
(
ln
a
)
n
x
n
n
!
(
−
∞
<
x
<
+
∞
)
a^x=e^{x\text{ln}a}=\sum\limits_{n=0}^\infty\frac{(\text{ln}a)^nx^n}{n!}\;\;\;(-\infty < x < +\infty)
ax=exlna=n=0∑∞n!(lna)nxn(−∞<x<+∞)
注意:以防考场忘记,下面再给出一些记忆线索,但必须在熟记上面级数的基础上.
(1)
e
x
e^x
ex:麦克劳林一般公式所有导数部分(包括
f
(
0
)
\,f(0)
f(0))都取
1
\,1\,
1可得.
(2)
1
1
−
x
\frac{1}{1-x}
1−x1:
1
\,1\,
1减首项分之公比 (无穷等比数列的求和).
(3)
1
1
+
x
\frac{1}{1+x}
1+x1:替换
1
1
−
x
\,\frac{1}{1-x}\,
1−x1级数中的
x
\,x\,
x为
−
x
\,-x
−x.
(4)
sin
x
\text{sin}x
sinx:都是奇数项,正负交替,结合
sin
x
∼
x
(
x
→
0
)
\,\text{sin}x\sim x\,(x\to 0)\,
sinx∼x(x→0)记忆.
(5)
cos
x
\text{cos}x
cosx:都是偶数项,正负交替,结合
cos
x
∼
1
−
1
2
x
2
(
x
→
0
)
\,\text{cos}x\sim 1-\frac{1}{2}x^2\,(x\to 0)\,
cosx∼1−21x2(x→0)记忆.
(6)
ln
(
1
+
x
)
\text{ln}(1+x)
ln(1+x):
ln
(
1
+
x
)
′
=
1
1
+
x
\text{ln}(1+x)'=\frac{1}{1+x}
ln(1+x)′=1+x1,所以对
1
1
+
x
\,\frac{1}{1+x}\,
1+x1每项求积分即得.
(7)
−
ln
(
1
−
x
)
-\text{ln}(1-x)
−ln(1−x):与
e
x
\,e^x\,
ex麦克劳林公式的差距只是分母没有阶乘.
(8)
arctan
x
\text{arctan}x
arctanx:
(
arctan
x
)
′
=
1
1
+
x
2
(\text{arctan}x)'=\frac{1}{1+x^2}
(arctanx)′=1+x21,利用
1
1
+
x
\,\frac{1}{1+x}\,
1+x1可求. 与
sin
x
\text{sin}x\,
sinx麦克劳林公式的差距只是分母没有阶乘.
(9) 关于收敛域:
e
x
e^x
ex、
sin
x
\text{sin}x
sinx、
cos
x
\text{cos}x\,
cosx、
a
x
a^x\,
ax收敛域都是
(
−
∞
,
+
∞
)
\,(-\infty,+\infty)
(−∞,+∞);
1
1
−
x
\frac{1}{1-x}
1−x1、
1
1
+
x
\frac{1}{1+x}\,
1+x1收敛域都是
(
−
1
,
1
)
\,(-1,1)
(−1,1);
ln
(
1
+
x
)
\text{ln}(1+x)\,
ln(1+x)是
(
−
1
,
1
]
\,(-1,1]\,
(−1,1]、
−
ln
(
1
−
x
)
-\text{ln}(1-x)\,
−ln(1−x)是
[
−
1
,
1
)
\,[-1,1)
[−1,1);
arctan
x
\text{arctan}x\,
arctanx是
[
−
1
,
1
]
\,[-1,1]
[−1,1];
(10)
ln
(
1
+
x
)
\text{ln}(1+x)
ln(1+x)、
−
ln
(
1
−
x
)
-\text{ln}(1-x)\,
−ln(1−x)级数从
n
=
1
\,n=1\,
n=1开始.
(11)
ln
(
1
+
x
)
\text{ln}(1+x)\,
ln(1+x)是
(
−
1
)
n
−
1
\,(-1)^{n-1}
(−1)n−1.
(二) 直接展开法 (不常用)
步骤:
以下面的
f
(
x
)
\,f(x)\,
f(x)为例,将其展开为
x
\,x\,
x的幂级数,
m
m\,
m为任意常数:
f
(
x
)
=
(
1
+
x
)
m
f(x)=(1+x)^m
f(x)=(1+x)m
step 1:求 f ( x ) \,f(x)\, f(x)的各阶导数在 x = 0 \,x=0\, x=0的值.
f ( 0 ) = 1 , f ′ ( 0 ) = m , f ′ ′ ( 0 ) = m ( m − 1 ) , . . . , f ( n ) ( 0 ) = m ( m − 1 ) . . . ( m − n + 1 ) f(0)=1,\,f'(0)=m,\,f''(0)=m(m-1),...,f^{(n)}(0)=m(m-1)...(m-n+1) f(0)=1,f′(0)=m,f′′(0)=m(m−1),...,f(n)(0)=m(m−1)...(m−n+1)
step 2:写出 f ( x ) \,f(x)\, f(x)的麦克劳林级数,并求出收敛半径 R \,R R.
f ( x ) = 1 + m x + m ( m − 1 ) 2 ! x 2 + . . . + m ( m − 1 ) . . . ( m − n + 1 ) n ! x n + . . . f(x)=1+mx+\frac{m(m-1)}{2!}x^2+...+\frac{m(m-1)...(m-n+1)}{n!}x^n+... f(x)=1+mx+2!m(m−1)x2+...+n!m(m−1)...(m−n+1)xn+...
1 R = lim n → ∞ ∣ a n + 1 a n ∣ = lim n → ∞ ∣ a n + 1 a n ∣ = lim n → ∞ ∣ m − n n + 1 ∣ = 1 ⇒ R = 1 \frac{1}{R}=\lim_{n\to\infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|=\lim_{n\to\infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|=\lim_{n\to\infty}\bigg|\frac{m-n}{n+1}\bigg|=1\Rightarrow R=1 R1=n→∞lim∣∣∣∣anan+1∣∣∣∣=n→∞lim∣∣∣∣anan+1∣∣∣∣=n→∞lim∣∣∣∣n+1m−n∣∣∣∣=1⇒R=1
step 3:判断在 ( − R , R ) \,(-R,R)\, (−R,R)内 lim n → ∞ R n ( x ) \,\lim\limits_{n\to\infty}R_n(x)\, n→∞limRn(x)是否为 0 \,0 0.
显然,
lim
n
→
∞
R
n
(
x
)
=
0
\,\lim\limits_{n\to\infty}R_n(x)=0
n→∞limRn(x)=0. 故
f
(
x
)
\,f(x)\,
f(x)展开式为:
f
(
x
)
=
1
+
m
x
+
m
(
m
−
1
)
2
!
x
2
+
.
.
.
+
m
(
m
−
1
)
.
.
.
(
m
−
n
+
1
)
n
!
x
n
+
.
.
.
(
−
1
<
x
<
1
)
f(x)=1+mx+\frac{m(m-1)}{2!}x^2+...+\frac{m(m-1)...(m-n+1)}{n!}x^n+...\;(-1<x<1)
f(x)=1+mx+2!m(m−1)x2+...+n!m(m−1)...(m−n+1)xn+...(−1<x<1)
step 4:讨论端点的敛散性.
其中
x
=
±
1
\,x=\pm1\,
x=±1的敛散性与
m
\,m\,
m有关.
(三) 间接展开法
间接展开法就是利用已知的函数展开式和幂级数,将函数展开成幂级数. 应当重点掌握.
(1) 有理分式: f ( x ) = P ( x ) Q ( x ) f(x)=\frac{P(x)}{Q(x)} f(x)=Q(x)P(x)
思路:对有理分式进行拆解,然后通过对每一个拆解项变形,套用 1 1 − x \,\color{Blue}\frac{1}{1-x}\, 1−x1或 1 1 + x \,\color{Blue}\frac{1}{1+x}\, 1+x1这两个麦克劳林级数展开.
关于如何拆解:
(1)
f
(
x
)
f(x)\,
f(x)为假分式:
f
(
x
)
=
多
项
式
+
真
分
式
f(x)=多项式+真分式
f(x)=多项式+真分式
(2)
f
(
x
)
f(x)\,
f(x)为真分式
f
(
x
)
=
分
子
不
变
因
式
分
解
=
(
拆
分
成
的
)
部
分
和
f(x)=\frac{分子不变}{因式分解}=(拆分成的)部分和
f(x)=因式分解分子不变=(拆分成的)部分和
详细拆法在积分学有理函数不定积分部分已有详细总结,不再赘述.
步骤:
以下面的
f
(
x
)
\,f(x)\,
f(x)为例,将其展开为
(
x
−
4
)
\,(x-4)\,
(x−4)的幂级数:
f
(
x
)
=
1
x
2
−
3
x
+
2
f(x)=\frac{1}{x^2-3x+2}
f(x)=x2−3x+21
step 1:对
P
(
x
)
\,P(x)\,
P(x)因式分解,拆解
f
(
x
)
\,f(x)
f(x).
f
(
x
)
=
1
x
2
−
3
x
+
2
=
1
x
−
2
−
1
x
−
1
f(x)=\frac{1}{x^2-3x+2}=\frac{1}{x-2}-\frac{1}{x-1}
f(x)=x2−3x+21=x−21−x−11
step 2:根据展开要求,对每一个拆解项进行变形,方便套用
1
1
−
x
\,\frac{1}{1-x}\,
1−x1或
1
1
+
x
\,\frac{1}{1+x}\,
1+x1级数.
1
x
−
2
=
1
2
+
(
x
−
4
)
=
1
2
⋅
1
1
+
x
−
4
2
=
1
2
∑
n
=
0
∞
(
−
1
)
n
(
x
−
4
2
)
n
=
∑
n
=
0
∞
(
−
1
)
n
2
n
+
1
(
x
−
4
)
n
\frac{1}{x-2}=\frac{1}{2+(x-4)}=\frac{1}{2}\cdot\frac{1}{1+\frac{x-4}{2}}=\frac{1}{2}\sum\limits_{n=0}^\infty(-1)^n(\frac{x-4}{2})^n=\sum\limits_{n=0}^\infty\frac{(-1)^n}{2^{n+1}}(x-4)^n
x−21=2+(x−4)1=21⋅1+2x−41=21n=0∑∞(−1)n(2x−4)n=n=0∑∞2n+1(−1)n(x−4)n
step 3:确定收敛区间,范围从使用麦克劳林级数的地方开始确定,最终是收敛区间与定义域的交集.
−
1
<
x
−
4
2
<
1
⇒
2
<
x
<
6
-1<\frac{x-4}{2}<1\Rightarrow 2<x<6
−1<2x−4<1⇒2<x<6
step 4:合并各拆解项结果得到最终展开式,收敛区间取交集.
step 5:讨论端点处的敛散性.
当
x
=
2
\,x=2\,
x=2时,
∑
n
=
0
∞
(
−
1
)
n
2
n
+
1
(
2
−
4
)
n
=
∑
n
=
0
∞
1
2
=
∞
\sum\limits_{n=0}^\infty\frac{(-1)^n}{2^{n+1}}(2-4)^n=\sum\limits_{n=0}^\infty\frac{1}{2}=\infty
n=0∑∞2n+1(−1)n(2−4)n=n=0∑∞21=∞
当
x
=
−
2
\,x=-2\,
x=−2时,
∑
n
=
0
∞
(
−
1
)
n
2
n
+
1
(
−
2
−
4
)
n
=
∑
n
=
0
∞
3
n
2
=
∞
\sum\limits_{n=0}^\infty\frac{(-1)^n}{2^{n+1}}(-2-4)^n=\sum\limits_{n=0}^\infty\frac{3^n}{2}=\infty
n=0∑∞2n+1(−1)n(−2−4)n=n=0∑∞23n=∞
注意:
(1) 级数中有限次的
x
\,x\,
x可以随意出入求和符号,比如展开
f
(
x
)
=
x
1
+
x
2
f(x)=\frac{x}{1+x^2}
f(x)=1+x2x,就可以先展开
1
1
+
x
2
\frac{1}{1+x^2}
1+x21,最后再乘以一个
x
\,x
x,因为:
∑
n
=
0
∞
(
−
1
)
n
x
2
n
+
1
=
x
∑
n
=
0
∞
(
−
1
)
n
x
2
n
\sum\limits_{n=0}^\infty(-1)^n x^{2n+1}=x\sum\limits_{n=0}^\infty(-1)^n x^{2n}
n=0∑∞(−1)nx2n+1=xn=0∑∞(−1)nx2n
又比如:
(2) 之后的几种方法除拆分思路有差异外,其余步骤大同小异,故后面都简略表述.
(2) 对数: ln P ( x ) \text{ln}P(x) lnP(x)
思路:对 ln \,\text{ln}\, ln内部的多项式 P ( x ) \,P(x)\, P(x)进行因式分解,利用对数性质拆解为若干 ln \,\text{ln}\, ln项,套用 ln ( 1 + x ) \,\color{Blue}\text{ln}(1+x)\, ln(1+x)或 − ln ( 1 − x ) \,\color{Blue}-\text{ln}(1-x)\, −ln(1−x)这两个麦克劳林级数展开.
拆解方法:
ln
(
a
+
b
x
)
(
c
+
d
x
)
=
ln
(
a
+
b
x
)
+
ln
(
c
+
d
x
)
=
ln
a
+
ln
(
1
+
b
a
x
)
+
ln
c
+
ln
(
1
+
d
c
x
)
\text{ln}(a+bx)(c+dx)=\text{ln}(a+bx)+\text{ln}(c+dx)=\text{ln}a+\text{ln}(1+\frac{b}{a}x)+\text{ln}c+\text{ln}(1+\frac{d}{c}x)
ln(a+bx)(c+dx)=ln(a+bx)+ln(c+dx)=lna+ln(1+abx)+lnc+ln(1+cdx)
注意拆解的符号问题:
f
(
x
)
=
ln
P
(
x
)
=
ln
∣
P
1
(
x
)
∣
+
ln
∣
P
2
(
x
)
∣
f(x)=\text{ln}P(x)=\text{ln}|P_1(x)|+\text{ln}|P_2(x)|
f(x)=lnP(x)=ln∣P1(x)∣+ln∣P2(x)∣
代入 x = 0 \,\color{Blue}x=0\, x=0点可以判断 P 1 ( x ) \,P_1(x) P1(x)、 P 2 ( x ) P_2(x)\, P2(x)正负,从而去掉绝对值 (因为展开成 ∑ n = 0 ∞ a n x n \,\sum\limits_{n=0}^\infty a_nx^n\, n=0∑∞anxn的级数 x = 0 \,x=0\, x=0总在收敛域内).
步骤:
以下面的
f
(
x
)
\,f(x)\,
f(x)为例,将其展开为
x
\,x\,
x的幂级数:
f
(
x
)
=
ln
(
1
−
3
x
+
2
x
2
)
f(x)=\text{ln}(1-3x+2x^2)
f(x)=ln(1−3x+2x2)
step 1:对
P
(
x
)
\,P(x)\,
P(x)因式分解,拆解
f
(
x
)
\,f(x)
f(x),去绝对值.
f
(
x
)
=
ln
(
1
−
3
x
+
2
x
2
)
=
ln
(
2
x
−
1
)
(
x
−
1
)
=
ln
∣
2
x
−
1
∣
+
ln
∣
x
−
1
∣
f(x)=\text{ln}(1-3x+2x^2)=\text{ln}(2x-1)(x-1)=\text{ln}|2x-1|+\text{ln}|x-1|
f(x)=ln(1−3x+2x2)=ln(2x−1)(x−1)=ln∣2x−1∣+ln∣x−1∣
x
=
0
⇒
(
2
x
−
1
)
<
0
,
(
x
−
1
)
<
0
⇒
f
(
x
)
=
ln
(
1
−
2
x
)
+
ln
(
1
−
x
)
x=0\Rightarrow (2x-1)<0,(x-1)<0\Rightarrow f(x)=\text{ln}(1-2x)+\text{ln}(1-x)
x=0⇒(2x−1)<0,(x−1)<0⇒f(x)=ln(1−2x)+ln(1−x)
step 2:根据展开要求,对每一个拆解项进行变形,方便套用
ln
(
1
+
x
)
\,\text{ln}(1+x)\,
ln(1+x)或
−
ln
(
1
−
x
)
\,-\text{ln}(1-x)\,
−ln(1−x)这两个级数.
ln
(
1
−
2
x
)
=
∑
n
=
1
∞
(
−
1
)
n
−
1
(
−
2
x
)
n
n
=
−
∑
n
=
1
∞
2
n
n
⋅
x
n
\text{ln}(1-2x)=\sum\limits_{n=1}^\infty (-1)^{n-1}\frac{(-2x)^n}{n}=-\sum\limits_{n=1}^\infty\frac{2^n}{n}\cdot x^n
ln(1−2x)=n=1∑∞(−1)n−1n(−2x)n=−n=1∑∞n2n⋅xn
step 3:确定收敛区间并讨论端点敛散性.
−
1
<
−
2
x
⩽
1
⇒
−
1
2
⩽
x
<
1
2
-1<-2x\leqslant1\Rightarrow -\frac{1}{2}\leqslant x<\frac{1}{2}
−1<−2x⩽1⇒−21⩽x<21
x
=
−
1
2
,
.
.
.
x=-\frac{1}{2},...
x=−21,...
(3) 三角函数: cos P ( x ) \text{cos}P(x) cosP(x)、 sin P ( x ) \text{sin}P(x) sinP(x)
思路:根据 sin P ( x ) \,\text{sin}P(x)\, sinP(x)或 cos P ( x ) \,\text{cos}P(x)\, cosP(x)中 P ( x ) \,P(x)\, P(x)的特点,使用三角函数公式拆解,套用 sin x \,\color{Blue}\text{sin}x\, sinx、 cos x \color{Blue}\text{cos}x\, cosx级数.
三角函数公式:
下面列举需要记忆的三角函数公式,在拆解是可能需要用到: sin ( α + β ) = sin α cos β + cos α sin β \text{sin}(\alpha+\beta)=\text{sin}\alpha\,\text{cos}\beta+\text{cos}\alpha\,\text{sin}\beta sin(α+β)=sinαcosβ+cosαsinβ sin ( α − β ) = sin α cos β − cos α sin β \text{sin}(\alpha-\beta)=\text{sin}\alpha\,\text{cos}\beta-\text{cos}\alpha\,\text{sin}\beta sin(α−β)=sinαcosβ−cosαsinβ cos ( α + β ) = cos α cos β − sin α sin β \text{cos}(\alpha+\beta)=\text{cos}\alpha\,\text{cos}\beta-\text{sin}\alpha\,\text{sin}\beta cos(α+β)=cosαcosβ−sinαsinβ cos ( α − β ) = cos α cos β + sin α sin β \text{cos}(\alpha-\beta)=\text{cos}\alpha\,\text{cos}\beta+\text{sin}\alpha\,\text{sin}\beta cos(α−β)=cosαcosβ+sinαsinβ tan ( α + β ) = tan α + tan β 1 − tan α tan β \text{tan}(\alpha+\beta)=\frac{\text{tan}\alpha+\text{tan}\beta}{1-\text{tan}\alpha\,\text{tan}\beta} tan(α+β)=1−tanαtanβtanα+tanβ tan ( α − β ) = tan α − tan β 1 + tan α tan β \text{tan}(\alpha-\beta)=\frac{\text{tan}\alpha-\text{tan}\beta}{1+\text{tan}\alpha\,\text{tan}\beta} tan(α−β)=1+tanαtanβtanα−tanβ sin α cos β = sin ( α + β ) + sin ( α − β ) 2 \text{sin}\alpha\,\text{cos}\beta=\frac{\text{sin}(\alpha+\beta)+\text{sin}(\alpha-\beta)}{2} sinαcosβ=2sin(α+β)+sin(α−β) cos α sin β = sin ( α + β ) − sin ( α − β ) 2 \text{cos}\alpha\,\text{sin}\beta=\frac{\text{sin}(\alpha+\beta)-\text{sin}(\alpha-\beta)}{2} cosαsinβ=2sin(α+β)−sin(α−β) cos α cos β = cos ( α + β ) + cos ( α − β ) 2 \text{cos}\alpha\,\text{cos}\beta=\frac{\text{cos}(\alpha+\beta)+\text{cos}(\alpha-\beta)}{2} cosαcosβ=2cos(α+β)+cos(α−β) sin α sin β = cos ( α + β ) − cos ( α − β ) − 2 \text{sin}\alpha\,\text{sin}\beta=\frac{\text{cos}(\alpha+\beta)-\text{cos}(\alpha-\beta)}{-2} sinαsinβ=−2cos(α+β)−cos(α−β) sin α + sin β = 2 sin α + β 2 cos α − β 2 \text{sin}\alpha+\text{sin}\beta=2\,\text{sin}\frac{\alpha+\beta}{2}\,\text{cos}\frac{\alpha-\beta}{2} sinα+sinβ=2sin2α+βcos2α−β sin α − sin β = 2 cos α + β 2 sin α − β 2 \text{sin}\alpha-\text{sin}\beta=2\,\text{cos}\frac{\alpha+\beta}{2}\,\text{sin}\frac{\alpha-\beta}{2} sinα−sinβ=2cos2α+βsin2α−β cos α + cos β = 2 cos α + β 2 cos α − β 2 \text{cos}\alpha+\text{cos}\beta=2\,\text{cos}\frac{\alpha+\beta}{2}\,\text{cos}\frac{\alpha-\beta}{2} cosα+cosβ=2cos2α+βcos2α−β cos α − cos β = − 2 sin α + β 2 sin α − β 2 \text{cos}\alpha-\text{cos}\beta=-2\,\text{sin}\frac{\alpha+\beta}{2}\,\text{sin}\frac{\alpha-\beta}{2} cosα−cosβ=−2sin2α+βsin2α−β
步骤:
以下面的
f
(
x
)
\,f(x)\,
f(x)为例,将其展开为
(
x
+
π
3
)
\,(x+\frac{\pi}{3})\,
(x+3π)的幂级数:
f
(
x
)
=
cos
x
f(x)=\text{cos}x
f(x)=cosx
step 1:根据展开要求,对
P
(
x
)
\,P(x)\,
P(x)使用三角函数公式进行变形,拆解
f
(
x
)
\,f(x)
f(x).
f
(
x
)
=
cos
(
x
+
π
3
−
π
3
)
=
cos
(
x
+
π
3
)
cos
π
3
+
sin
(
x
+
π
3
)
sin
π
3
=
1
2
cos
(
x
+
π
3
)
+
3
2
sin
(
x
+
π
3
)
f(x)=\text{cos}(x+\frac{\pi}{3}-\frac{\pi}{3})=\text{cos}(x+\frac{\pi}{3})\text{cos}\frac{\pi}{3}+\text{sin}(x+\frac{\pi}{3})\text{sin}\frac{\pi}{3}=\frac{1}{2}\,\text{cos}(x+\frac{\pi}{3})+\frac{\sqrt{3}}{2}\,\text{sin}(x+\frac{\pi}{3})
f(x)=cos(x+3π−3π)=cos(x+3π)cos3π+sin(x+3π)sin3π=21cos(x+3π)+23sin(x+3π)
step 2:套用
sin
x
\,\color{Blue}\text{sin}x\,
sinx或
cos
x
\,\color{Blue}\text{cos}x\,
cosx这两个级数.
f
(
x
)
=
1
2
∑
n
=
0
∞
(
−
1
)
n
1
(
2
n
)
!
(
x
+
π
3
)
2
n
+
3
2
∑
n
=
0
∞
(
−
1
)
n
1
(
2
n
+
1
)
!
(
x
+
π
3
)
2
n
+
1
f(x)=\frac{1}{2}\sum\limits_{n=0}^{\infty}(-1)^n\frac{1}{(2n)!}(x+\frac{\pi}{3})^{2n}+\frac{\sqrt{3}}{2}\sum\limits_{n=0}^{\infty}(-1)^n\frac{1}{(2n+1)!}(x+\frac{\pi}{3})^{2n+1}
f(x)=21n=0∑∞(−1)n(2n)!1(x+3π)2n+23n=0∑∞(−1)n(2n+1)!1(x+3π)2n+1
step 3:确定收敛区间并讨论端点敛散性.
−
∞
<
x
<
+
∞
-\infty<x<+\infty
−∞<x<+∞
(4) 先求积分再求导
有的 f ( x ) \,f(x)\, f(x)不能通过变形直接套公式展开,可以考虑先求积分再求导.
思路:先对 f ( x ) \,f(x)\, f(x)求积分得到 F ( x ) \,F(x) F(x),展开 F ( x ) \,F(x)\, F(x)后再求导恢复.
步骤:
以下面的
f
(
x
)
\,f(x)\,
f(x)为例,将其展开为
x
\,x\,
x的幂级数:
f
(
x
)
=
1
x
2
+
2
x
+
1
f(x)=\frac{1}{x^2+2x+1}
f(x)=x2+2x+11
step 1:求
f
(
x
)
\,f(x)\,
f(x)不定积分.
f
(
x
)
=
1
(
x
+
1
)
2
f(x)=\frac{1}{(x+1)^2}
f(x)=(x+1)21
∫
1
(
x
+
1
)
2
d
x
=
−
1
x
+
1
+
C
\int\frac{1}{(x+1)^2}\text{d}x=-\frac{1}{x+1}+C
∫(x+1)21dx=−x+11+C
step 2:令
g
(
x
)
\,g(x)\,
g(x)为
f
(
x
)
\,f(x)\,
f(x)的一个原函数,对其展开.
令
g
(
x
)
=
−
1
x
+
1
,
g
′
(
x
)
=
f
(
x
)
令\,g(x)=-\frac{1}{x+1},g'(x)=f(x)
令g(x)=−x+11,g′(x)=f(x)
g
(
x
)
=
∑
n
=
0
∞
(
−
1
)
n
+
1
x
n
g(x)=\sum\limits_{n=0}^{\infty}(-1)^{n+1}x^n
g(x)=n=0∑∞(−1)n+1xn
step 3:把展开后 g ( x ) \,g(x)\, g(x)中的 n = 0 \,n=0\, n=0项单独拆出来,再求导即得到 f ( x ) \,f(x)\, f(x)展开.
g ( x ) = ∑ n = 0 ∞ ( − 1 ) n + 1 x n = − 1 + ∑ n = 1 ∞ ( − 1 ) n + 1 x n g(x)=\sum\limits_{n=0}^{\infty}(-1)^{n+1}x^n=-1+\sum\limits_{n=1}^{\infty}(-1)^{n+1}x^n g(x)=n=0∑∞(−1)n+1xn=−1+n=1∑∞(−1)n+1xn f ( x ) = g ′ ( x ) = ∑ n = 1 ∞ ( − 1 ) n + 1 n x n − 1 = ∑ n = 0 ∞ ( − 1 ) n ( n + 1 ) x n ( − 1 < x < 1 ) f(x)=g'(x)=\sum\limits_{n=1}^{\infty}(-1)^{n+1}nx^{n-1}=\sum\limits_{n=0}^{\infty}(-1)^{n}(n+1)x^{n}\;(-1<x<1) f(x)=g′(x)=n=1∑∞(−1)n+1nxn−1=n=0∑∞(−1)n(n+1)xn(−1<x<1)
step 4:确定收敛区间并讨论端点敛散性.
注意:
(1) 之所以要把的
n
=
0
\,n=0\,
n=0项拆出来,是因为如果不拆,直接按照求导公式求导,将会产生
x
−
1
\,x^{-1}
x−1,而事实上
n
=
0
\,n=0\,
n=0这项就等于
−
1
\,-1
−1,求导以后就是
0
\,0
0. 不管是幂级数展开,还是后面的求和函数,只要发现
x
0
\,\color{Blue}x^0\,
x0项的存在,就要小心.
(2) 注意到最后展开把
x
n
−
1
\,x^{n-1}\,
xn−1转化为题目要求的
x
n
\,x^n
xn,如果不能直接看出,建议写出前几项,然后找规律确定.
(5) 先求导再求积分
和先积分后求导类似.
思路:先对 f ( x ) \,f(x)\, f(x)求导数得到 f ′ ( x ) \,f'(x) f′(x),展开 f ′ ( x ) \,f'(x)\, f′(x)后再求积分恢复.
步骤:
以下面的
f
(
x
)
\,f(x)\,
f(x)为例,将其展开为
x
\,x\,
x的幂级数:
f
(
x
)
=
x
arctan
x
−
ln
1
+
x
2
f(x)=x\text{arctan}x-\text{ln}\sqrt{1+x^2}
f(x)=xarctanx−ln1+x2
step 1:求
f
′
(
x
)
\,f'(x)
f′(x).
f
′
(
x
)
=
arctan
x
+
x
1
+
x
2
−
1
2
⋅
2
x
1
+
x
2
=
arctan
x
f'(x)=\text{arctan}x+\frac{x}{1+x^2}-\frac{1}{2}\cdot\frac{2x}{1+x^2}=\text{arctan}x
f′(x)=arctanx+1+x2x−21⋅1+x22x=arctanx
step 2:对
f
′
(
x
)
\,f'(x)\,
f′(x)展开.
f
′
(
x
)
=
∑
n
=
0
∞
(
−
1
)
n
x
2
n
+
1
2
n
+
1
f'(x)=\sum\limits_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{2n+1}
f′(x)=n=0∑∞(−1)n2n+1x2n+1
step 3:利用
N
.
−
L
.
\,N.-L.\,
N.−L.恢复
f
(
x
)
\,f(x)
f(x):
f
(
x
)
=
f
(
0
)
+
∫
0
x
f
′
(
x
)
d
x
=
0
+
∑
n
=
0
∞
(
−
1
)
n
(
2
n
+
1
)
(
2
n
+
2
)
x
2
n
+
2
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
+
1
)
(
2
n
+
2
)
x
2
n
+
2
f(x)={\color{Red}f(0)}+\int^x_0f'(x)\text{d}x=0+\sum\limits_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)(2n+2)}\,x^{2n+2}=\sum\limits_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)(2n+2)}\,x^{2n+2}
f(x)=f(0)+∫0xf′(x)dx=0+n=0∑∞(2n+1)(2n+2)(−1)nx2n+2=n=0∑∞(2n+1)(2n+2)(−1)nx2n+2
step 4:确定收敛区间并讨论端点敛散性.
注意:
(1)不管是展开为幂级数还是后面求和函数,积分可以使用不定积分或
N
.
−
L
.
\,N.-L.\,
N.−L.进行恢复,两种方法本质上都是一样的. 但是不定积分不要漏掉
C
\,C
C,
N
.
−
L
.
N.-L.\,
N.−L.不要漏掉
f
(
0
)
\,f(0)
f(0)!
(2) 之所以使用
f
(
0
)
\,f(0)\,
f(0)纯粹是为了好算. 特别注意并非所有题目
f
(
0
)
\,f(0)\,
f(0)都为
0
\,0
0,有的题目
0
\,0\,
0甚至不在定义域里,就要换其他点计算.
(四) 已知 f ( x ) \,f(x)\, f(x),求 f ( n ) ( 0 ) \,f^{(n)}(0)\, f(n)(0)
思路:
step 1:展开
f
(
x
)
\,f(x)\,
f(x)为幂级数.
step 2:按照下面的方法求得
f
(
n
)
(
0
)
\,f^{(n)}(0)
f(n)(0).
方法:
f
(
x
)
=
∑
n
=
0
∞
a
n
⋅
x
n
=
a
0
+
a
1
x
+
a
2
x
2
+
.
.
.
+
a
n
x
n
+
.
.
.
f(x)=\sum\limits_{n=0}^{\infty}a_n\cdot x^n=a_0+a_1x+a_2x^2+...+a_nx^n+...
f(x)=n=0∑∞an⋅xn=a0+a1x+a2x2+...+anxn+...
由麦克劳林公式:
a
n
=
f
(
n
)
(
0
)
n
!
a_n=\frac{f^{(n)}(0)}{n!}
an=n!f(n)(0)
所以,
f
(
n
)
(
0
)
=
a
n
⋅
n
!
\color{Blue}f^{(n)}(0)=a_n\cdot n!
f(n)(0)=an⋅n!
因此求 f ( n ) ( 0 ) \,f^{(n)}(0) f(n)(0),实际上就是找展开级数中 a n x n \,a_nx^n anxn项的 a n \,a_n an.
(结合立方和公式) 例. 求下面 f ( x ) \,f(x)\, f(x)的四阶导: f ( 4 ) ( 0 ) \,f^{(4)}(0) f(4)(0).
f ( x ) = 1 + x + x 2 1 − x + x 2 f(x)=\frac{1+x+x^2}{1-x+x^2} f(x)=1−x+x21+x+x2解:
f ( x ) = 1 + 2 x 1 − x + x 2 = 1 + 2 x ( 1 + x ) ( 1 − x + x 2 ) ( 1 + x ) = 1 + 2 x + 2 x 2 1 + x 3 f(x)=1+\frac{2x}{1-x+x^2}=1+\frac{2x(1+x)}{(1-x+x^2)(1+x)}=1+\frac{2x+2x^2}{1+x^3} f(x)=1+1−x+x22x=1+(1−x+x2)(1+x)2x(1+x)=1+1+x32x+2x2
= 1 + ( 2 x + 2 x 2 ) ∑ n = 0 ∞ ( − 1 ) n x 3 n =1+(2x+2x^2)\sum\limits_{n=0}^{\infty}(-1)^nx^{3n} =1+(2x+2x2)n=0∑∞(−1)nx3n显然,只有当 n = 1 \,n=1\, n=1时,有 a 4 x 4 = 2 x ⋅ ( − x 3 ) = − 2 x 4 \,a_4x^4=2x\cdot(-x^3)=-2x^4 a4x4=2x⋅(−x3)=−2x4,
所以 f ( 4 ) ( 0 ) = a 4 ⋅ 4 ! = − 2 ⋅ 24 = − 48 \,f^{(4)}(0)=a_4\cdot4!=-2\cdot24=-48\, f(4)(0)=a4⋅4!=−2⋅24=−48
注意:
(1) 若题目求的是
f
(
k
n
)
(
0
)
\,f^{(kn)}(0)
f(kn)(0),或幂级数中是
x
k
n
\,x^{kn}
xkn,代
k
n
\,kn\,
kn求即可.
(2) 若题目求的是
f
(
n
)
(
a
)
\,f^{(n)}(a)\,
f(n)(a),导数求
x
=
a
\,x=a\,
x=a的即可.
(3) 若是
f
(
x
)
\,f(x)\,
f(x)是分段函数,注意需不需要讨论特殊点、
n
=
0
n=0\,
n=0的情况.
5 求幂级数的和函数
和函数定义
在收敛域上,记 s ( x ) = ∑ n = 1 ∞ u n ( x ) \,s(x)=\sum\limits^\infty_{n=1}u_n(x)\, s(x)=n=1∑∞un(x)为 ∑ n = 1 ∞ u n ( x ) \,\sum\limits^\infty_{n=1}u_n(x)\, n=1∑∞un(x)的和函数.
幂级数的和函数
s ( x ) = ∑ n = 0 ∞ a n ( x − b ) n = a 0 + a 1 ( x − b ) + a 2 ( x − b ) 2 + . . . , x ∈ I . s(x)=\sum\limits_{n=0}^\infty a_n(x-b)^n=a_0+a_1(x-b)+a_2(x-b)^2+...,x\in I. s(x)=n=0∑∞an(x−b)n=a0+a1(x−b)+a2(x−b)2+...,x∈I.
注意:
(1)
I
I\,
I代表收敛域.
(2) 当
x
=
b
\,x=b\,
x=b时,如果代入
∑
n
=
0
∞
a
n
(
x
−
b
)
n
\,\sum\limits_{n=0}^\infty a_n(x-b)^n\,
n=0∑∞an(x−b)n会出现
0
0
\,0^0
00. 但实际上代入展开表示的式子,
s
(
b
)
=
a
0
s(b)=a_0
s(b)=a0,也就是常数项. 这是因为幂级数引入
0
\,0\,
0次方只是为了表达
x
0
=
1
\,x^0=1
x0=1,表示某一项不与
(
x
−
b
)
k
\,(x-b)^k
(x−b)k,只是一种记号罢了. 如果不能理解,请把级数写成数串的形式,再代入.
求幂级数和函数的基本步骤
(1) 求出收敛域.
(2) 令
s
(
x
)
=
∑
n
=
0
∞
(
.
.
.
)
\,s(x)=\sum\limits_{n=0}^\infty(...)\,
s(x)=n=0∑∞(...),如果计算过程中发现除
0
\,0
0,要计算单独计算该点.
(3) 对
s
(
x
)
\,s(x)\,
s(x)进行适当变形,套用常见麦克劳林级数,求得和函数.
几点说明
a) 求和函数的工具
(1) 常见函数的麦克劳林级数.
(2) 逐项求导性、逐项积分性.
(3) 微分方程.
b) 求和函数与展开为幂级数的关系
求幂级数的和函数,本质上是函数展开成幂级数的逆运算:
函数展开成幂级数:
f
(
x
)
→
∑
n
=
0
∞
a
n
x
n
f(x)\to\sum\limits_{n=0}^\infty a_nx^n
f(x)→n=0∑∞anxn
求幂级数和函数:
∑
n
=
0
∞
a
n
x
n
→
s
(
x
)
\sum\limits_{n=0}^\infty a_nx^n\to s(x)
n=0∑∞anxn→s(x)
c) 及时改变下标
这是求和函数非常重要的习惯.
在求和函数的过程中,对幂级数进行求导时(求积分不必考虑),一定要及时地改变下标. 一旦发现某一项为
0
\,0
0,就应从下一项开始表示,比如:
( ∑ n = 0 ∞ x n ) ′ = ∑ n = 1 ∞ n x n − 1 \bigg(\sum\limits_{n=\color{Blue}0}^\infty x^{n}\bigg)'=\sum\limits_{n=\color{Blue}1}^\infty nx^{n-1} (n=0∑∞xn)′=n=1∑∞nxn−1
这是因为求导后原本幂级数的常数项
a
0
\,a_0\,
a0变为了
0
\,0\,
0,所以需要下一项开始. 如果不改变,即下面这种情况:
(
∑
n
=
0
∞
x
n
)
′
=
∑
n
=
0
∞
n
x
n
−
1
\bigg(\sum\limits_{n=\color{Blue}0}^\infty x^{n}\bigg)'={\color{Red}\sum\limits_{n=0}^\infty nx^{n-1}}
(n=0∑∞xn)′=n=0∑∞nxn−1
第一项就成了
x
−
1
\,x^{-1}\,
x−1,出现了负数次方,继续计算一定会出现问题.
原因就在于第一项原本是常数项,求导后就应该是
0
\,0
0,不能再用这种统一的形式表示.
再次强调,读者如果不能理解,请尝试把级数写成数串的形式理解.
除此以外,在拆项和约掉阶乘的过程中,也需要及时更新下标.
更多下标问题请看上文幂级数分析性质中的下标变换理论.
d) 导致 s ( x ) \,s(x)\, s(x)分段的原因
1. (除
x
\,x
x) 在对
s
(
x
)
\,s(x)\,
s(x)变形的过程中需要进行除以
x
\,x\,
x(凑积分)的操作,所以要单独计算
s
(
0
)
\,s(0)
s(0).
2. (端点)
s
(
x
)
s(x)\,
s(x)要讨论完所有收敛域上的情况. 若端点是收敛的,完成变形后,一定要确定
s
(
x
)
\,s(x)\,
s(x)有没有覆盖到,若没有覆盖到,就要单独求.
(1) 先积分再求导
思路:如果可以看出级数是某个原函数的导数,或者通过乘以或除以有限个 x \,x\, x达到如此效果,就需要考虑先积分再求导的方法.
以下面这个幂级数为例:
∑
n
=
0
∞
(
n
+
1
)
x
n
\sum\limits_{n=0}^\infty (n+1)x^n
n=0∑∞(n+1)xn
(
n
+
1
)
x
n
(n+1)x^{n}\,
(n+1)xn显然可由
x
n
+
1
\,x^{n+1}\,
xn+1求导而得,考虑先积分在求导.
令
s
(
x
)
=
∑
n
=
0
∞
(
n
+
1
)
x
n
\,s(x)=\sum\limits_{n=0}^\infty (n+1)x^n
s(x)=n=0∑∞(n+1)xn,
收敛半径
R
=
lim
n
→
∞
∣
n
+
2
n
+
1
∣
=
1
\,R=\lim\limits_{n\to\infty}\big|\frac{n+2}{n+1}\big|=1
R=n→∞lim∣∣n+1n+2∣∣=1,
显然
x
=
±
1
\,x=\pm 1
x=±1,级数发散,故收敛域为:
(
−
1
,
1
)
(-1,\,1)
(−1,1).
∫
0
x
s
(
x
)
d
x
=
∫
0
x
(
∑
n
=
0
∞
(
n
+
1
)
x
n
)
d
x
=
∑
n
=
0
∞
∫
0
x
(
n
+
1
)
x
n
d
x
=
∑
n
=
0
∞
x
n
+
1
=
x
1
−
x
\int^x_0s(x)\text{d}x=\int_0^x\bigg(\sum\limits_{n=0}^\infty (n+1)x^n\bigg)\text{d}x=\sum\limits_{n=0}^\infty \int_0^x(n+1)x^n\text{d}x=\sum\limits_{n=0}^\infty x^{n+1}=\frac{x}{1-x}
∫0xs(x)dx=∫0x(n=0∑∞(n+1)xn)dx=n=0∑∞∫0x(n+1)xndx=n=0∑∞xn+1=1−xx
⇒
s
(
x
)
=
[
∫
0
x
s
(
x
)
d
x
]
′
=
(
x
1
−
x
)
′
=
1
(
1
−
x
)
2
\Rightarrow s(x)=\bigg[\int^x_0s(x)\text{d}x\bigg]'=\bigg(\frac{x}{1-x}\bigg)'=\frac{1}{(1-x)^2}
⇒s(x)=[∫0xs(x)dx]′=(1−xx)′=(1−x)21 熟练以后,可以简化上面的计算过程为:
∑
n
=
0
∞
(
n
+
1
)
x
n
=
(
∑
n
=
0
∞
x
n
+
1
)
′
=
(
x
1
−
x
)
′
=
1
(
1
−
x
)
2
\sum\limits_{n=0}^\infty (n+1)x^n=\bigg(\sum\limits_{n=0}^\infty x^{n+1}\bigg)'=\bigg(\frac{x}{1-x}\bigg)'=\frac{1}{(1-x)^2}
n=0∑∞(n+1)xn=(n=0∑∞xn+1)′=(1−xx)′=(1−x)21
又比如级数是二阶导的形式:
∑
n
=
0
∞
(
n
+
1
)
(
n
+
2
)
x
n
=
(
∑
n
=
0
∞
x
n
+
2
)
′
′
=
(
x
2
1
−
x
)
′
′
=
2
(
1
−
x
)
3
\sum\limits_{n=0}^\infty (n+1)(n+2)x^n=\bigg(\sum\limits_{n=0}^\infty x^{n+2}\bigg)''=\bigg(\frac{x^2}{1-x}\bigg)''=\frac{2}{(1-x)^3}
n=0∑∞(n+1)(n+2)xn=(n=0∑∞xn+2)′′=(1−xx2)′′=(1−x)32
技巧:
可以发现,在计算
∑
n
=
0
∞
(
n
+
1
)
(
n
+
2
)
x
n
\,\sum\limits_{n=0}^\infty (n+1)(n+2)x^n\,
n=0∑∞(n+1)(n+2)xn时,最后直接求
(
x
2
1
−
x
)
′
′
\,(\frac{x^2}{1-x})''\,
(1−xx2)′′的计算量是比较大的. 但如果熟悉下标变换理论(见幂级数分析性质),就可以通过下面这种拆项的方式简化计算量:
( ∑ n = 0 ∞ x n + 2 ) ′ ′ = ( ∑ n = 2 ∞ x n ) ′ ′ = ( ∑ n = 0 ∞ x n − 1 − x ) ′ ′ = ( 1 1 − x − 1 − x ) ′ ′ = [ 1 ( 1 − x ) 2 − 1 ] ′ = 2 ( 1 − x ) 3 \bigg(\sum\limits_{n=0}^\infty x^{n+2}\bigg)''=\bigg(\sum\limits_{n=2}^\infty x^{n}\bigg)''=\bigg(\sum\limits_{n=0}^\infty x^{n}-1-x\bigg)''=\bigg(\frac{1}{1-x}-1-x\bigg)''=\bigg[\frac{1}{(1-x)^2}-1\bigg]'=\frac{2}{(1-x)^3} (n=0∑∞xn+2)′′=(n=2∑∞xn)′′=(n=0∑∞xn−1−x)′′=(1−x1−1−x)′′=[(1−x)21−1]′=(1−x)32
(2) 先求导再积分
思路:和先求积分再求导类似,如果可以看出级数是某个函数求导的结果,或者通过乘以或除以有限个 x \,x\, x达到这样的效果,就要考虑先求导再积分的方法.
读者需要尤其熟悉幂函数的不定积分公式:
∫ x a d x = 1 a + 1 x a + 1 + C \int x^a\text{d}x=\frac{1}{a+1}x^{a+1}+C ∫xadx=a+11xa+1+C为了避免处理 C \,C C,我们通常使用 N.-L. \,\text{N.-L.}\, N.-L.(牛顿莱布尼茨公式) 完成计算 (不定积分公式也能计算):
∫ x 0 x x a d x = 1 a + 1 x a + 1 ∣ x 0 x \int^x_{x_0} x^a\text{d}x=\frac{1}{a+1}x^{a+1}\bigg|^x_{x_0} ∫x0xxadx=a+11xa+1∣∣∣∣x0x
此方法无非就是想要先对 1 a + 1 x a + 1 \,\frac{1}{a+1}x^{a+1}\, a+11xa+1求导得到 x a \,x^a\, xa,
再套用麦克劳林级数求其和函数,最后再积分恢复至原级数的和函数.
所以首要任务就是凑出 1 a + 1 x a + 1 \,\frac{1}{a+1}x^{a+1} a+11xa+1.
以下面这个幂级数为例:
∑
n
=
0
∞
1
(
n
+
1
)
x
n
\sum\limits_{n=0}^\infty \frac{1}{(n+1)}x^n
n=0∑∞(n+1)1xn
显然,如果
1
(
n
+
1
)
x
n
\,\frac{1}{(n+1)}x^n\,
(n+1)1xn再乘一个
x
\,x\,
x,就能考虑先积分再求导的方法了.
令
s
(
x
)
=
∑
n
=
0
∞
1
(
n
+
1
)
x
n
\,s(x)=\sum\limits_{n=0}^\infty \frac{1}{(n+1)}x^n
s(x)=n=0∑∞(n+1)1xn,
收敛半径
R
=
lim
n
→
∞
∣
n
+
1
n
+
2
∣
=
1
\,R=\lim\limits_{n\to\infty}\big|\frac{n+1}{n+2}\big|=1
R=n→∞lim∣∣n+2n+1∣∣=1,
s
(
0
)
=
1
\color{Red}s(0)=1
s(0)=1 当
x
=
1
\,x=1\,
x=1时,级数发散;当
x
=
−
1
\,x=-1\,
x=−1时,级数收敛. 故级数收敛域为:
[
−
1
,
1
)
[-1,\,1)
[−1,1). 令:
f
(
x
)
=
x
s
(
x
)
=
∑
n
=
0
∞
1
(
n
+
1
)
x
n
+
1
=
∑
n
=
0
∞
1
(
n
+
1
)
x
n
+
1
=
∫
0
x
∑
n
=
0
∞
x
n
d
x
=
∫
0
x
1
1
−
x
d
x
f(x)=xs(x)=\sum\limits_{n=0}^\infty \frac{1}{(n+1)}x^{n+1}=\sum\limits_{n=0}^\infty \frac{1}{(n+1)}x^{n+1}=\int^x_0\sum\limits_{n=0}^\infty x^n\text{d}x=\int^x_0\frac{1}{1-x}\text{d}x
f(x)=xs(x)=n=0∑∞(n+1)1xn+1=n=0∑∞(n+1)1xn+1=∫0xn=0∑∞xndx=∫0x1−x1dx
f
′
(
x
)
=
1
1
−
x
f'(x)=\frac{1}{1-x}
f′(x)=1−x1
f
(
x
)
=
f
(
0
)
+
∫
0
x
f
′
(
x
)
d
x
=
−
ln
(
1
−
x
)
f(x)={\color{Red}f(0)}+\int^x_0f'(x)\text{d}x=-\text{ln}(1-x)
f(x)=f(0)+∫0xf′(x)dx=−ln(1−x)
s
(
x
)
=
{
−
ln
(
1
−
x
)
x
,
x
∈
[
−
1
,
0
)
∪
(
0
,
1
)
0
,
x
=
0
s(x)=\begin{cases}-\frac{\text{ln}(1-x)}{x},&x\in[-1,0)\cup(0,1)\\0,&x=0\end{cases}
s(x)={−xln(1−x),0,x∈[−1,0)∪(0,1)x=0
熟练以后,可以不必引入
f
(
x
)
\,f(x)\,
f(x):
当
x
≠
0
\,x\neq 0\,
x=0时,
s
(
x
)
=
∑
n
=
0
∞
1
(
n
+
1
)
x
n
=
1
x
∑
n
=
0
∞
1
n
+
1
x
n
+
1
s(x)=\sum\limits_{n=0}^\infty \frac{1}{(n+1)}x^n=\frac{1}{x}\sum\limits_{n=0}^\infty\frac{1}{n+1}x^{n+1}
s(x)=n=0∑∞(n+1)1xn=x1n=0∑∞n+11xn+1
=
1
x
∫
0
x
∑
n
=
0
∞
x
n
d
x
=
1
x
∫
0
x
1
1
−
x
d
x
=
−
ln
(
1
−
x
)
x
=\frac{1}{x}\int^x_0\sum\limits_{n=0}^\infty x^n\text{d}x=\frac{1}{x}\int^x_0\frac{1}{1-x}\text{d}x=-\frac{\text{ln}(1-x)}{x}
=x1∫0xn=0∑∞xndx=x1∫0x1−x1dx=−xln(1−x)
注意:
(1) 之所以要单独求
s
(
0
)
\,s(0)\,
s(0)是因为后面有除
x
\,x\,
x的操作.
s
(
0
)
s(0)\,
s(0)不一定是
0
\,0
0,最保险求法是把级数前几项写出来代入.
(2) 使用
N.-L.
\,\text{N.-L.}\,
N.-L.计算不要忘记计算
f
(
x
0
)
\,f(x_0)
f(x0) (此题
x
0
=
0
\,x_0=0
x0=0),并非所有题目都是
f
(
0
)
=
0
\,f(0)=0
f(0)=0.
(3) ∑ n = 0 ∞ P ( n ) x n \sum\limits_{n=0}^\infty P(n)x^n n=0∑∞P(n)xn
思路:将幂级数转化为:
∑
n
=
0
∞
x
n
=
1
1
−
x
(
−
1
<
x
<
1
)
\sum\limits_{n=0}^\infty x^n=\frac{1}{1-x}\;(-1<x<1)
n=0∑∞xn=1−x1(−1<x<1)
∑
n
=
0
∞
(
−
1
)
n
x
n
=
1
1
+
x
(
−
1
<
x
<
1
)
\sum\limits_{n=0}^\infty (-1)^nx^n=\frac{1}{1+x}\;(-1<x<1)
n=0∑∞(−1)nxn=1+x1(−1<x<1)
例:求下面的级数的和函数:
∑ n = 0 ∞ ( n 2 + 4 n + 3 ) x n \sum\limits_{n=0}^\infty (n^2+4n+3)x^n n=0∑∞(n2+4n+3)xn解:
显然,收敛半径 R = 1 \,R=1 R=1.
当 x = ± 1 \,x=\pm1\, x=±1时,级数发散,故收敛域为: ( − 1 , 1 ) (-1,1) (−1,1).
令 s ( x ) = ∑ n = 0 ∞ ( n 2 + 4 n + 3 ) x n = ∑ n = 0 ∞ ( n + 1 ) ( n + 3 ) x n = ∑ n = 0 ∞ ( n + 1 ) ( n + 2 ) x n + ∑ n = 0 ∞ ( n + 1 ) x n 令\,s(x)=\sum\limits_{n=0}^\infty (n^2+4n+3)x^n=\sum\limits_{n=0}^\infty (n+1)(n+3)x^n=\sum\limits_{n=0}^\infty (n+1)(n+2)x^n+\sum\limits_{n=0}^\infty (n+1)x^n 令s(x)=n=0∑∞(n2+4n+3)xn=n=0∑∞(n+1)(n+3)xn=n=0∑∞(n+1)(n+2)xn+n=0∑∞(n+1)xn其中,
∑ n = 0 ∞ ( n + 1 ) ( n + 2 ) x n = ( ∑ n = 0 ∞ x n + 2 ) ′ ′ = ( ∑ n = 2 ∞ x n ) ′ ′ = ( ∑ n = 0 ∞ x n − 1 − x ) ′ ′ = 2 ( 1 − x ) 3 \sum\limits_{n=0}^\infty (n+1)(n+2)x^n=\bigg(\sum\limits_{n=0}^\infty x^{n+2}\bigg)''=\bigg(\sum\limits_{n=2}^\infty x^{n}\bigg)''=\bigg(\sum\limits_{n=0}^\infty x^{n}-1-x\bigg)''=\frac{2}{(1-x)^3} n=0∑∞(n+1)(n+2)xn=(n=0∑∞xn+2)′′=(n=2∑∞xn)′′=(n=0∑∞xn−1−x)′′=(1−x)32 ∑ n = 0 ∞ ( n + 1 ) x n = ( ∑ n = 0 ∞ x n + 1 ) ′ = ( x 1 − x ) ′ = 1 ( 1 − x ) 2 \sum\limits_{n=0}^\infty (n+1)x^n=\bigg(\sum\limits_{n=0}^\infty x^{n+1}\bigg)'=\bigg(\frac{x}{1-x}\bigg)'=\frac{1}{(1-x)^2} n=0∑∞(n+1)xn=(n=0∑∞xn+1)′=(1−xx)′=(1−x)21所以,
s ( x ) = 3 − x ( 1 − x ) 3 s(x)=\frac{3-x}{(1-x)^3} s(x)=(1−x)33−x
注意:
(1) 记住下面这个转换,用得非常频繁,即 “
1
1\,
1减公比分之首项”:
∑
n
=
k
∞
x
n
+
C
=
x
k
+
C
1
−
x
\sum\limits_{n=k}^\infty x^{n+C}=\frac{x^{k+C}}{1-x}
n=k∑∞xn+C=1−xxk+C
(2) P ( x ) P(x)\, P(x)中若出现 a n \,a^n\, an作为系数,建议留到最后再处理,不要提前代换. 比如:
∑ n = 0 ∞ n 3 n x n = x ∑ n = 0 ∞ n 3 n x n − 1 = x ( ∑ n = 0 ∞ 3 n x n ) ′ = x ( 1 1 − 3 x ) ′ \sum\limits_{n=0}^\infty n3^nx^n=x\sum\limits_{n=0}^\infty n3^nx^{n-1}=x\bigg(\sum\limits_{n=0}^\infty3^nx^n\bigg)'=x\bigg(\frac{1}{1-3x}\bigg)' n=0∑∞n3nxn=xn=0∑∞n3nxn−1=x(n=0∑∞3nxn)′=x(1−3x1)′
(3) 遇到
n
2
\,n^2\,
n2的拆解方法:
∑
n
=
0
∞
n
2
x
n
=
∑
n
=
0
∞
[
n
(
n
−
1
)
+
n
]
x
n
\sum\limits_{n=0}^\infty n^2x^n=\sum\limits_{n=0}^\infty[n(n-1)+n]x^n
n=0∑∞n2xn=n=0∑∞[n(n−1)+n]xn
(4) 遇到复杂的有理分式,先拆项再求.
(4) ∑ n = 0 ∞ x n P ( n ) \sum\limits_{n=0}^\infty \frac{x^n}{P(n)} n=0∑∞P(n)xn
思路:将幂级数转化为
∑
n
=
0
∞
(
−
1
)
n
−
1
n
x
n
=
ln
(
1
+
x
)
(
−
1
<
x
⩽
1
)
\sum\limits_{n=0}^\infty \frac{(-1)^{n-1}}{n}x^n=\text{ln}(1+x)\;(-1<x\leqslant1)
n=0∑∞n(−1)n−1xn=ln(1+x)(−1<x⩽1)
∑
n
=
0
∞
x
n
n
=
−
ln
(
1
−
x
)
(
−
1
⩽
x
<
1
)
\sum\limits_{n=0}^\infty \frac{x^n}{n}=-\text{ln}{(1-x)}\;(-1\leqslant x<1)
n=0∑∞nxn=−ln(1−x)(−1⩽x<1)
例:求下面的级数的和函数:
∑ n = 0 ∞ 1 n ( n + 1 ) x n \sum\limits_{n=0}^\infty \frac{1}{n(n+1)}x^n n=0∑∞n(n+1)1xn解:
显然,收敛半径 R = 1 \,R=1 R=1.
当 x = ± 1 \,x=\pm1\, x=±1时,级数发散,故收敛域为: ( − 1 , 1 ) (-1,1) (−1,1).
令 s ( x ) = ∑ n = 0 ∞ ( n 2 + 4 n + 3 ) x n = ∑ n = 0 ∞ ( n + 1 ) ( n + 3 ) x n = ∑ n = 0 ∞ ( n + 1 ) ( n + 2 ) x n + ∑ n = 0 ∞ ( n + 1 ) x n 令\,s(x)=\sum\limits_{n=0}^\infty (n^2+4n+3)x^n=\sum\limits_{n=0}^\infty (n+1)(n+3)x^n=\sum\limits_{n=0}^\infty (n+1)(n+2)x^n+\sum\limits_{n=0}^\infty (n+1)x^n 令s(x)=n=0∑∞(n2+4n+3)xn=n=0∑∞(n+1)(n+3)xn=n=0∑∞(n+1)(n+2)xn+n=0∑∞(n+1)xn其中,
∑ n = 0 ∞ ( n + 1 ) ( n + 2 ) x n = ( ∑ n = 0 ∞ x n + 2 ) ′ ′ = ( ∑ n = 2 ∞ x n ) ′ ′ = ( ∑ n = 0 ∞ x n − 1 − x ) ′ ′ = 2 ( 1 − x ) 3 \sum\limits_{n=0}^\infty (n+1)(n+2)x^n=\bigg(\sum\limits_{n=0}^\infty x^{n+2}\bigg)''=\bigg(\sum\limits_{n=2}^\infty x^{n}\bigg)''=\bigg(\sum\limits_{n=0}^\infty x^{n}-1-x\bigg)''=\frac{2}{(1-x)^3} n=0∑∞(n+1)(n+2)xn=(n=0∑∞xn+2)′′=(n=2∑∞xn)′′=(n=0∑∞xn−1−x)′′=(1−x)32∑ n = 0 ∞ ( n + 1 ) x n = ( ∑ n = 0 ∞ x n + 1 ) ′ = ( x 1 − x ) ′ = 1 ( 1 − x ) 2 \sum\limits_{n=0}^\infty (n+1)x^n=\bigg(\sum\limits_{n=0}^\infty x^{n+1}\bigg)'=\bigg(\frac{x}{1-x}\bigg)'=\frac{1}{(1-x)^2} n=0∑∞(n+1)xn=(n=0∑∞xn+1)′=(1−xx)′=(1−x)21
所以,
s ( x ) = 3 − x ( 1 − x ) 3 s(x)=\frac{3-x}{(1-x)^3} s(x)=(1−x)33−x
(5) 级数中含阶乘
思路:考虑将幂级数转化为:
e x = ∑ n = 0 ∞ x n n ! ( − ∞ < x < + ∞ ) e^x=\sum\limits_{n=0}^\infty\frac{x^n}{n!}\;\;\;(-\infty < x < +\infty) ex=n=0∑∞n!xn(−∞<x<+∞) sin x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! ( − ∞ < x < + ∞ ) \text{sin}x=\sum\limits_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{(2n+1)!}\;\;\;(-\infty < x < +\infty) sinx=n=0∑∞(−1)n(2n+1)!x2n+1(−∞<x<+∞) cos x = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! ( − ∞ < x < + ∞ ) \text{cos}x=\sum\limits_{n=0}^\infty(-1)^n\frac{x^{2n}}{(2n)!}\;\;\;(-\infty < x < +\infty) cosx=n=0∑∞(−1)n(2n)!x2n(−∞<x<+∞) ( 1 + x ) a = ∑ n = 0 ∞ a ⋅ ( a − 1 ) . . . ( a − n + 1 ) n ! x n ( − 1 < x < 1 , a ∈ R ) (1+x)^a=\sum\limits_{n=0}^\infty\frac{a\cdot(a-1)...(a-n+1)}{n!}\,x^{n}\;\;\;({\color{Blue}{-1< x < 1}},\,a\in \mathbb{R}) (1+x)a=n=0∑∞n!a⋅(a−1)...(a−n+1)xn(−1<x<1,a∈R)
(6) a n a_n\, an未知
特征:求幂级数
∑
n
=
0
∞
a
n
x
n
\,\sum\limits_{n=0}^\infty a_nx^n
n=0∑∞anxn,但题目并未直接给出幂级数的
a
n
\,a_n
an.
思路:
(1) 若
a
n
\,a_n\,
an可以解出,想尽办法解出.
(2) 若题目给出幂级数满足的微分方程,直接将
∑
n
=
0
∞
a
n
x
n
\,\sum\limits_{n=0}^\infty a_nx^n\,
n=0∑∞anxn代入方程.
(3) 若题目给出递推表达式,要考虑利用表达式构造微分方程.
例. ( n + 1 ) a n + 1 = ( n + 1 2 ) a n (n+1)a_{n+1}=(n+\frac{1}{2})a_n (n+1)an+1=(n+21)an,证明:当 ∣ x ∣ < 1 \,|x|<1\, ∣x∣<1时,下列幂级数收敛并求其和函数:
∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty}a_nx^n n=0∑∞anxn解:
显然, lim n → ∞ ∣ a n + 1 a n ∣ = 1 ⇒ R = 1 ⇒ ∣ x ∣ < 1 \lim\limits_{n\to\infty}\big|\frac{a_{n+1}}{a_n}\big|=1\Rightarrow R=1\Rightarrow|x|<1\, n→∞lim∣∣anan+1∣∣=1⇒R=1⇒∣x∣<1时收敛,令:s ( x ) = ∑ n = 1 ∞ a n x n s(x)=\sum_{n=1}^{\infty}a_nx^n s(x)=n=1∑∞anxn
则
s ′ ( x ) = ∑ n = 1 ∞ n a n x n − 1 = 1 + ∑ n = 0 ∞ ( n + 1 ) a n + 1 x n = 1 + ∑ n = 0 ∞ ( n + 1 2 ) a n x n s'(x)=\sum^\infty_{n=1}na_nx^{n-1}=1+\sum^\infty_{n=0}(n+1)a_{n+1}x^{n}=1+\sum^\infty_{n=0}(n+\frac{1}{2})a_nx^{n} s′(x)=n=1∑∞nanxn−1=1+n=0∑∞(n+1)an+1xn=1+n=0∑∞(n+21)anxn = 1 + ∑ n = 0 ∞ n a n x n + 1 2 ∑ n = 0 ∞ a n x n = 1 + x ∑ n = 0 ∞ n a n x n − 1 + 1 2 ∑ n = 0 ∞ a n x n = 1 + x s ′ ( x ) + 1 2 s ( x ) =1+\sum^\infty_{n=0}na_nx^{n}+\frac{1}{2}\sum^\infty_{n=0}a_nx^{n}=1+x\sum^\infty_{n=0}na_nx^{n-1}+\frac{1}{2}\sum^\infty_{n=0}a_nx^{n}=1+xs'(x)+\frac{1}{2}s(x) =1+n=0∑∞nanxn+21n=0∑∞anxn=1+xn=0∑∞nanxn−1+21n=0∑∞anxn=1+xs′(x)+21s(x)即
s ′ ( x ) − 1 2 ( 1 − x ) s ( x ) = 1 1 − x ⇒ s ( x ) = C 1 − x − 2 s'(x)-\frac{1}{2(1-x)}s(x)=\frac{1}{1-x}\Rightarrow s(x)=\frac{C}{\sqrt{1-x}}-2 s′(x)−2(1−x)1s(x)=1−x1⇒s(x)=1−xC−2因为 s ( 0 ) = 0 \,s(0)=0 s(0)=0,所以 C = 2 \,C=2 C=2, s ( x ) = 2 1 − x − 2 s(x)=\frac{2}{\sqrt{1-x}}-2 s(x)=1−x2−2.
(7) 构造微分方程反解和函数
对于难以使用麦克劳林公式求解和函数的幂级数,可以考虑能否通过构造微分方程求解.
例. 求下面幂级数的和函数:
∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! ! = 1 − x 2 2 + x 4 2 ⋅ 4 − x 6 2 ⋅ 4 ⋅ 6 + . . . \sum\limits_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!!}=1-\frac{x^2}{2}+\frac{x^4}{2\cdot 4}-\frac{x^6}{2\cdot4\cdot6}+... n=0∑∞(−1)n(2n)!!x2n=1−2x2+2⋅4x4−2⋅4⋅6x6+...解:令 s ( x ) = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! ! \,s(x)=\sum\limits_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!!} s(x)=n=0∑∞(−1)n(2n)!!x2n,
则
s ′ ( x ) = ∑ n = 1 ∞ ( − 1 ) n x 2 n − 1 ( 2 n − 2 ) ! ! = ∑ n = 0 ∞ ( − 1 ) n + 1 x 2 n + 1 ( 2 n ) ! ! = − x ⋅ s ( x ) s'(x)=\sum\limits_{n=1}^{\infty}(-1)^n\frac{x^{2n-1}}{(2n-2)!!}=\sum\limits_{n=0}^{\infty}(-1)^{n+1}\frac{x^{2n+1}}{(2n)!!}=-x\cdot s(x) s′(x)=n=1∑∞(−1)n(2n−2)!!x2n−1=n=0∑∞(−1)n+1(2n)!!x2n+1=−x⋅s(x) 于是有:
{ s ′ ( x ) + x s ( x ) = 0 s ( 0 ) = 1 ⇒ s ( x ) = e − 1 2 x 2 \begin{cases}s'(x)+xs(x)=0\\s(0)=1\end{cases}\Rightarrow s(x)=e^{-{\frac{1}{2}x^2}} {s′(x)+xs(x)=0s(0)=1⇒s(x)=e−21x2