高等数学笔记-苏德矿-第十一章-级数(Ⅲ)-傅里叶级数

高等数学笔记-苏德矿

第十一章 级数

第六节 傅里叶级数

一、傅里叶级数的概念

01 问题的引入

一个周期为 T = 2 l T=2l T=2l 的函数能否表示为无限个简单的周期函数之和?

注:这些简单函数指的是:
1   ,   sin ⁡ π x l   ,   cos ⁡ π x l   ,   sin ⁡ 2 π x l   ,   cos ⁡ 2 π x l   ,   ⋯   ,   sin ⁡ n π x l   ,   cos ⁡ n π x l   ,   ⋯ 1\ ,\ \sin\frac{\pi x}{l}\ ,\ \cos\frac{\pi x}{l}\ ,\ \sin\frac{2\pi x}{l}\ ,\ \cos\frac{2\pi x}{l}\ ,\ \cdots\ ,\ \sin\frac{n\pi x}{l}\ ,\ \cos\frac{n\pi x}{l}\ ,\ \cdots 1 , sinlπx , coslπx , sinl2πx , cosl2πx ,  , sinlnπx , coslnπx , 
通项的周期为: 2 π n π l = 2 l n   ,   n = 1 , 2 , ⋯ \displaystyle{ \frac{2\pi}{\frac{n\pi}{l}}=\frac{2l}{n} \ , \ n=1,2,\cdots}% lnπ2π=n2l , n=1,2, ,即 2 l 2l 2l 是这个三角函数系的公共周期。

02 内积的推广定义

定义:设 ( a , b ) (a,b) (a,b) 是一个运算,满足下列条件:

(1) ( a , a ) ⩾ 0 (a,a)\geqslant0 (a,a)0(非负性)

(2) ( a , b + c ) = ( a , b ) + ( a , c ) (a,b+c)=(a,b)+(a,c) (a,b+c)=(a,b)+(a,c)(满足线性运算法则1)

(3) ( a , β b ) = β ( b , a ) (a,\beta b)=\beta(b,a) (a,βb)=β(b,a)(满足线性运算法则2)

(4) ( a , b ) = ( b , a ) (a,b)=(b,a) (a,b)=(b,a)(交换性)

称运算 ( a , b ) (a,b) (a,b) a   ,   b a\ , \ b a , b 的内积。

( f 1 ( x ) , f 2 ( x ) ) = ∫ − l l f 1 ( x ) f 2 ( x ) d x (f_1(x),f_2(x))=\int_{-l}^{l}f_1(x)f_2(x)dx (f1(x),f2(x))=llf1(x)f2(x)dx 是一个内积。

03 正交三角函数系
  • ∫ − l l 1 ⋅ sin ⁡ n π x l d x = 0   ,   n = 1 , 2 , ⋯ \displaystyle{ \int_{-l}^{l}1\cdot \sin\frac{n\pi x}{l} dx=0\ , \ n=1,2,\cdots } ll1sinlnπxdx=0 , n=1,2,

  • ∫ − l l 1 ⋅ cos ⁡ n π x l d x = 0   ,   n = 1 , 2 , ⋯ \displaystyle{ \int_{-l}^{l}1\cdot \cos\frac{n\pi x}{l} dx=0\ , \ n=1,2,\cdots } ll1coslnπxdx=0 , n=1,2,

    ∫ cos ⁡ a x d x = 1 a sin ⁡ a x + C   ,   n = 1 , 2 , ⋯ \displaystyle{ \int\cos ax dx=\frac1a\sin ax+C\ , \ n=1,2,\cdots } cosaxdx=a1sinax+C , n=1,2,

    ∫ sin ⁡ a x d x = 1 a cos ⁡ a x + C   ,   a ≠ 0 \displaystyle{ \int\sin ax dx=\frac1a\cos ax+C\ , \ a\neq0 } sinaxdx=a1cosax+C , a=0

  • ∫ − l l sin ⁡ n π x l ⋅ cos ⁡ m π x l d x = 0   ,   n , m = 1 , 2 , ⋯ \displaystyle{ \int_{-l}^{l}\sin\frac{n\pi x}{l}\cdot \cos\frac{m\pi x}{l} dx=0\ , \ n,m=1,2,\cdots } llsinlnπxcoslmπxdx=0 , n,m=1,2,

  • ∫ − l l sin ⁡ n π x l ⋅ sin ⁡ m π x l d x = 0   ,   n ≠ m   ,   n , m = 1 , 2 , ⋯ \displaystyle{ \int_{-l}^{l}\sin\frac{n\pi x}{l}\cdot \sin\frac{m\pi x}{l} dx=0\ , \ n\neq m\ , \ n,m=1,2,\cdots } llsinlnπxsinlmπxdx=0 , n=m , n,m=1,2,

  • ∫ − l l cos ⁡ n π x l ⋅ cos ⁡ m π x l d x = 0   ,   n ≠ m   ,   n , m = 1 , 2 , ⋯ \displaystyle{ \int_{-l}^{l}\cos\frac{n\pi x}{l}\cdot \cos\frac{m\pi x}{l} dx=0\ , \ n\neq m\ , \ n,m=1,2,\cdots } llcoslnπxcoslmπxdx=0 , n=m , n,m=1,2,

  • ∫ − l l 1 ⋅ 1 d x = 2 l \displaystyle{ \int_{-l}^{l}1\cdot 1 dx=2l } ll11dx=2l

  • ∫ − l l sin ⁡ 2 n π x l d x = l   ,   n = 1 , 2 , ⋯ \displaystyle{ \int_{-l}^{l}\sin^2\frac{n\pi x}{l} dx=l\ , \ n=1,2,\cdots } llsin2lnπxdx=l , n=1,2,

  • ∫ − l l cos ⁡ 2 n π x l d x = l   ,   n = 1 , 2 , ⋯ \displaystyle{ \int_{-l}^{l}\cos^2\frac{n\pi x}{l} dx=l\ , \ n=1,2,\cdots } llcos2lnπxdx=l , n=1,2,

知上面三角函数系是正交三角函数系。

04 傅里叶级数的推导

α 1 , α 2 , ⋯   , α i , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_i,\cdots,\alpha_n α1,α2,,αi,,αn 为正交向量组,

α = k 1 α 1 + k 2 α 2 + ⋯ + k i α i + ⋯ + k n α n \alpha=k_1\alpha_1+k_2\alpha_2+\cdots+k_i\alpha_i+\cdots+k_n\alpha_n α=k1α1+k2α2++kiαi++knαn

( α , α i ) = ( k i α i , α i ) = k i ( α i , α i ) (\alpha,\alpha_i)=(k_i\alpha_i,\alpha_i)=k_i(\alpha_i,\alpha_i) (α,αi)=(kiαi,αi)=ki(αi,αi)

k i = ( α , α i ) ( α i , α i ) = ( α , α i ) ∣ α i ∣ 2 \displaystyle{ k_i=\frac{(\alpha,\alpha_i)}{(\alpha_i,\alpha_i)}=\frac{(\alpha,\alpha_i)}{|\alpha_i|^2} }% ki=(αi,αi)(α,αi)=αi2(α,αi)

假如周期为 T = 2 l T=2l T=2l 的函数 f ( x ) f(x) f(x),有 f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π x l + b n sin ⁡ n π x l ) \displaystyle{ f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}{(a_n\cos\frac{n\pi x}{l}+b_n\sin\frac{n\pi x}{l})} }% f(x)=2a0+n=1(ancoslnπx+bnsinlnπx)
a n = ( f ( x ) , cos ⁡ n π x l ) ( cos ⁡ n π x l , cos ⁡ n π x l ) = ∫ − l l f ( x ) cos ⁡ n π x l d x ∫ − l l cos ⁡ 2 n π x l d x = 1 l ∫ − l l f ( x ) cos ⁡ n π x l d x   ,   n = 1 , 2 , ⋯ b n = ( f ( x ) , sin ⁡ n π x l ) ( sin ⁡ n π x l , sin ⁡ n π x l ) = ∫ − l l f ( x ) sin ⁡ n π x l d x ∫ − l l sin ⁡ 2 n π x l d x = 1 l ∫ − l l f ( x ) sin ⁡ n π x l d x   ,   n = 1 , 2 , ⋯ a 0 = ( f ( x ) , 1 2 ) ( 1 2 , 1 2 ) = ∫ − l l f ( x ) 1 2 d x ∫ − l l 1 2 ⋅ 1 2 d x = 1 l ∫ − l l f ( x ) d x   ,   恰 好 满 足 a n 的 通 项 。 a n = 1 l ∫ − l l f ( x ) cos ⁡ n π x l d x   ,   n = 0 , 1 , 2 , ⋯ b n = 1 l ∫ − l l f ( x ) sin ⁡ n π x l d x   ,   n = 1 , 2 , 3 , ⋯ \begin{aligned} & a_n=\frac{(f(x),\cos\frac{n\pi x}{l})}{(\cos\frac{n\pi x}{l},\cos\frac{n\pi x}{l})}=\frac{\int_{-l}^{l}f(x)\cos\frac{n\pi x}{l} dx}{\int_{-l}^{l}\cos^2\frac{n\pi x}{l} dx}=\frac1l\int_{-l}^{l}f(x)\cos\frac{n\pi x}{l} dx\ , \ n=1,2,\cdots\\ & b_n=\frac{(f(x),\sin\frac{n\pi x}{l})}{(\sin\frac{n\pi x}{l},\sin\frac{n\pi x}{l})}=\frac{\int_{-l}^{l}f(x)\sin\frac{n\pi x}{l} dx}{\int_{-l}^{l}\sin^2\frac{n\pi x}{l} dx}=\frac1l\int_{-l}^{l}f(x)\sin\frac{n\pi x}{l} dx\ , \ n=1,2,\cdots\\ & a_0=\frac{(f(x),\frac12)}{(\frac12,\frac12)}=\frac{\int_{-l}^{l}f(x)\frac12 dx}{\int_{-l}^{l}\frac12\cdot\frac12 dx}=\frac1l\int_{-l}^{l}f(x) dx\ , \ 恰好满足a_n的通项。\\ & a_n=\frac1l\int_{-l}^{l}f(x)\cos\frac{n\pi x}{l} dx\ , \ n=0,1,2,\cdots\\ & b_n=\frac1l\int_{-l}^{l}f(x)\sin\frac{n\pi x}{l} dx\ , \ n=1,2,3,\cdots \end{aligned} an=(coslnπx,coslnπx)(f(x),coslnπx)=llcos2lnπxdxllf(x)coslnπxdx=l1llf(x)coslnπxdx , n=1,2,bn=(sinlnπx,sinlnπx)(f(x),sinlnπx)=llsin2lnπxdxllf(x)sinlnπxdx=l1llf(x)sinlnπxdx , n=1,2,a0=(21,21)(f(x),21)=ll2121dxllf(x)21dx=l1llf(x)dx , anan=l1llf(x)coslnπxdx , n=0,1,2,bn=l1llf(x)sinlnπxdx , n=1,2,3,

05 傅里叶级数的定义

若周期为 T = 2 l T=2l T=2l 的函数 f ( x ) f(x) f(x),一般只要 f ( x ) f(x) f(x) 可积,则

a n = 1 l ∫ − l l f ( x ) cos ⁡ n π x l d x   ,   n = 0 , 1 , 2 , ⋯ \displaystyle{ a_n=\frac1l\int_{-l}^{l}f(x)\cos\frac{n\pi x}{l} dx\ , \ n=0,1,2,\cdots }% an=l1llf(x)coslnπxdx , n=0,1,2, b n = 1 l ∫ − l l f ( x ) sin ⁡ n π x l d x   ,   n = 1 , 2 , 3 , ⋯ \displaystyle{ b_n=\frac1l\int_{-l}^{l}f(x)\sin\frac{n\pi x}{l} dx\ , \ n=1,2,3,\cdots }% bn=l1llf(x)sinlnπxdx , n=1,2,3, 存在,

a n   ,   b n a_n \ , \ b_n an , bn 称为 f ( x ) f(x) f(x) 的傅里叶系数。

对应有三角级数: a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π x l + b n sin ⁡ n π x l ) \displaystyle{ \frac{a_0}{2}+\sum\limits_{n=1}^{\infty}{(a_n\cos\frac{n\pi x}{l}+b_n\sin\frac{n\pi x}{l})} }% 2a0+n=1(ancoslnπx+bnsinlnπx) ,称为 f ( x ) f(x) f(x)傅里叶级数或者称为傅氏级数

记为 f ( x ) ∼ a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π x l + b n sin ⁡ n π x l ) \displaystyle{ f(x)\sim\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}{(a_n\cos\frac{n\pi x}{l}+b_n\sin\frac{n\pi x}{l})} }% f(x)2a0+n=1(ancoslnπx+bnsinlnπx)

二、狄利克雷定理及延伸

01 狄利克雷定理

设周期 T = 2 l T=2l T=2l 的函数 f ( x ) f(x) f(x) [ − l , l ] [-l,l] [l,l] 上逐段光滑,

f ( x ) f(x) f(x) 的傅里叶级数: a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π x l + b n sin ⁡ n π x l ) \displaystyle{ \frac{a_0}{2}+\sum\limits_{n=1}^{\infty}{(a_n\cos\frac{n\pi x}{l}+b_n\sin\frac{n\pi x}{l})} }% 2a0+n=1(ancoslnπx+bnsinlnπx) 处处绝对收敛(级数收敛)。

( 逐段光滑:将定义域区间分为有限个小区间,在每一个小区间上导数存在且连续。)

由函数定义知,级数和记为 S ( x )   ,   x ∈ ( − ∞ , + ∞ ) S(x)\ , \ x\in(-\infty,+\infty) S(x) , x(,+),且
a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π x l + b n sin ⁡ n π x l ) = S ( x ) = f ( x − 0 ) + f ( x + 0 ) 2   ,   x ∈ ( − ∞ , + ∞ ) = { f ( x ) f ( x )   在   x   处 连 续 f ( x − 0 ) + f ( x + 0 ) 2 f ( x )   在   x   处 不 连 续 \begin{aligned} & \frac{a_0}{2}+\sum\limits_{n=1}^{\infty}{(a_n\cos\frac{n\pi x}{l}+b_n\sin\frac{n\pi x}{l})} \\ & =S(x)=\frac{f(x-0)+f(x+0)}{2}\ , \ x\in(-\infty,+\infty)\\ & = \begin{cases}f(x) & f(x)\ 在\ x\ 处连续 \\ \frac{f(x-0)+f(x+0)}{2} & f(x)\ 在\ x\ 处不连续\end{cases} \end{aligned} 2a0+n=1(ancoslnπx+bnsinlnπx)=S(x)=2f(x0)+f(x+0) , x(,+)={f(x)2f(x0)+f(x+0)f(x)  x f(x)  x 
称为 f ( x ) f(x) f(x) 的傅里叶展开。

02 狄利克雷定理的延伸

(1) 狄利克雷定理的加强条件

如果此时, f ( x ) f(x) f(x) 处处连续,则 a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π x l + b n sin ⁡ n π x l ) = S ( x ) = f ( x )   ,   x ∈ ( − ∞ , + ∞ ) \displaystyle{ \frac{a_0}{2}+\sum\limits_{n=1}^{\infty}{(a_n\cos\frac{n\pi x}{l}+b_n\sin\frac{n\pi x}{l})}=S(x)=f(x)\ , \ x\in(-\infty,+\infty) }% 2a0+n=1(ancoslnπx+bnsinlnπx)=S(x)=f(x) , x(,+)

(2) 狄利克雷定理的端点值处理

一般地,周期 T = 2 l T=2l T=2l 的函数 f ( x ) f(x) f(x) 只给出 [ − l , l ] [-l,l] [l,l] 上表达式,此时端点值不好处理。

注意到,这里的和函数 S ( x ) S(x) S(x) 处处有定义, S ( x ) S(x) S(x) 也是周期函数,周期为 T = 2 l T=2l T=2l

S ( l ) = f ( l − 0 ) + f ( l + 0 ) 2 = f ( l − 0 ) + f ( − 2 l + l + 0 ) 2 = f ( l − 0 ) + f ( − l + 0 ) 2 \displaystyle{ S(l)=\frac{f(l-0)+f(l+0)}{2}=\frac{f(l-0)+f(-2l+l+0)}{2}=\frac{f(l-0)+f(-l+0)}{2} }% S(l)=2f(l0)+f(l+0)=2f(l0)+f(2l+l+0)=2f(l0)+f(l+0)

S ( − l ) = S ( 2 l − l ) = S ( l ) \displaystyle{ S(-l)=S(2l-l)=S(l) }% S(l)=S(2ll)=S(l) ,与上述和函数的值相同。

(3) 周期函数思想求解区间外部的和

S ( 2 k l ± l ) = S ( ± l ) = f ( l − 0 ) + f ( − l + 0 ) 2   ,   l ∈ Z \displaystyle{ S(2kl\pm l)=S(\pm l)=\frac{f(l-0)+f(-l+0)}{2}\ , \ l\in Z }% S(2kl±l)=S(±l)=2f(l0)+f(l+0) , lZ

x ∈ ( 2 k l − l , 2 k l + l )   ,   k ∈ Z , k ≠ 0   →   x − 2 k l ∈ ( − l , l ) x\in(2kl-l,2kl+l)\ , \ k\in Z,k\neq0\ \rightarrow\ x-2kl\in(-l,l) x(2kll,2kl+l) , kZ,k=0  x2kl(l,l)

S ( x ) = S ( x − 2 k l ) = ⋯ S(x)=S(x-2kl)=\cdots S(x)=S(x2kl)= (代入)

(4) 周期函数思想求解非标准区间

如果 f ( x ) f(x) f(x) 周期为 T = 2 l T=2l T=2l ,给出 ( a , a + 2 l ] (a,a+2l] (a,a+2l] 上表达式, f ( x ) f(x) f(x) 展成傅里叶级数。

( 若 f ( x ) f(x) f(x) 连续, 周期为 T T T a a a 为常数,则 ∫ a a + T f ( x ) d x = ∫ 0 T f ( x ) d x \displaystyle{ \int_{a}^{a+T}f(x)dx=\int_{0}^{T}f(x)dx }% aa+Tf(x)dx=0Tf(x)dx )

a n = 1 l ∫ − l l f ( x ) cos ⁡ n π x l d x = 1 l ∫ a a + 2 l f ( x ) cos ⁡ n π x l d x   ,   n = 0 , 1 , 2 , ⋯ \displaystyle{ a_n=\frac1l\int_{-l}^{l}f(x)\cos\frac{n\pi x}{l} dx=\frac1l\int_{a}^{a+2l}f(x)\cos\frac{n\pi x}{l}dx\ , \ n=0,1,2,\cdots }% an=l1llf(x)coslnπxdx=l1aa+2lf(x)coslnπxdx , n=0,1,2,

b n = 1 l ∫ − l l f ( x ) sin ⁡ n π x l d x = 1 l ∫ a a + 2 l f ( x ) sin ⁡ n π x l d x   ,   n = 1 , 2 , 3 , ⋯ \displaystyle{ b_n=\frac1l\int_{-l}^{l}f(x)\sin\frac{n\pi x}{l} dx=\frac1l\int_{a}^{a+2l}f(x)\sin\frac{n\pi x}{l} dx\ , \ n=1,2,3,\cdots }% bn=l1llf(x)sinlnπxdx=l1aa+2lf(x)sinlnπxdx , n=1,2,3,

三、有限区间的傅里叶展开

[ − l , l ] [-l,l] [l,l] 上逐段光滑 f ( x ) f(x) f(x) 展成傅里叶级数。

01 构造周期函数

(1) 定义周期函数

定义 F ( x ) = { f ( x ) x ∈ [ − l , l ) f ( x − 2 k l ) x ∈ [ 2 k l − l , 2 k l + l ) , k ∈ Z , k ≠ 0 \displaystyle{ F(x)=\begin{cases}f(x) & x\in[-l,l) \\ f(x-2kl) & x\in[2kl-l,2kl+l),k\in Z,k\neq0\end{cases} }% F(x)={f(x)f(x2kl)x[l,l)x[2kll,2kl+l),kZ,k=0

(2) 验证是否周期函数

x ∈ [ 2 k l − l , 2 k l + l )   ⇒ x − 2 k l ∈ [ − l , l ) , k ∈ Z , k ≠ 0 x\in[2kl-l,2kl+l) \ \Rightarrow x-2kl\in[-l,l),k\in Z,k\neq0 x[2kll,2kl+l) x2kl[l,l),kZ,k=0

F ( x ) = f ( x − 2 k l ) = F ( x − 2 k l ) F(x)=f(x-2kl)=F(x-2kl) F(x)=f(x2kl)=F(x2kl)

02 构造函数展成傅里叶级数

此时 F ( x ) F(x) F(x) 满足狄利克雷条件,周期为 2 l 2l 2l,在 [ − l , l ) [-l,l) [l,l) F ( x ) = f ( x ) F(x)=f(x) F(x)=f(x) 逐段光滑,

于是将 F ( x ) F(x) F(x) 展成傅里叶级数。

a n = 1 l ∫ − l l f ( x ) cos ⁡ n π x l d x   ,   n = 0 , 1 , 2 , ⋯ \displaystyle{ a_n=\frac1l\int_{-l}^{l}f(x)\cos\frac{n\pi x}{l} dx\ , \ n=0,1,2,\cdots }% an=l1llf(x)coslnπxdx , n=0,1,2, b n = 1 l ∫ − l l f ( x ) sin ⁡ n π x l d x   ,   n = 1 , 2 , 3 , ⋯ \displaystyle{ b_n=\frac1l\int_{-l}^{l}f(x)\sin\frac{n\pi x}{l} dx\ , \ n=1,2,3,\cdots }% bn=l1llf(x)sinlnπxdx , n=1,2,3,

于是得到 F ( x ) F(x) F(x) 的傅里叶级数:

a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π x l + b n sin ⁡ n π x l ) = S ( x ) = F ( x − 0 ) + F ( x + 0 ) 2   ,   x ∈ ( − ∞ , + ∞ ) \displaystyle{ \frac{a_0}{2}+\sum\limits_{n=1}^{\infty}{(a_n\cos\frac{n\pi x}{l}+b_n\sin\frac{n\pi x}{l})}=S(x)=\frac{F(x-0)+F(x+0)}{2}\ , \ x\in(-\infty,+\infty) }% 2a0+n=1(ancoslnπx+bnsinlnπx)=S(x)=2F(x0)+F(x+0) , x(,+)

03 构造函数转化为待求函数

x ∈ [ − l , l ] x\in[-l,l] x[l,l] 时,得到 f ( x ) f(x) f(x) 的傅里叶级数:

a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π x l + b n sin ⁡ n π x l ) = S ( x ) = f ( x − 0 ) + f ( x + 0 ) 2   ,   x ∈ ( − l , l ) \displaystyle{ \frac{a_0}{2}+\sum\limits_{n=1}^{\infty}{(a_n\cos\frac{n\pi x}{l}+b_n\sin\frac{n\pi x}{l})}=S(x)=\frac{f(x-0)+f(x+0)}{2} \ , \ x\in(-l,l) }% 2a0+n=1(ancoslnπx+bnsinlnπx)=S(x)=2f(x0)+f(x+0) , x(l,l)

S ( ± l ) = f ( − l + 0 ) + f ( l − 0 ) 2 \displaystyle{ S(\pm l)=\frac{f(-l+0)+f(l-0)}{2} }% S(±l)=2f(l+0)+f(l0) ,称为 f ( x ) f(x) f(x) [ − l , l ] [-l,l] [l,l] 上展成傅里叶级数。

04 有限区间到区间外部

注意,这里的和函数 S ( x ) S(x) S(x) 处处有定义,且是周期函数,周期是 2 l 2l 2l

x ∈ ( 2 k l − l , 2 k l + l ) x\in(2kl-l,2kl+l) x(2kll,2kl+l) 时, k ∈ Z , k ≠ 0   ⇒   x − 2 k l ∈ ( − l , l ) k\in Z,k\neq0\ \Rightarrow\ x-2kl\in(-l,l) kZ,k=0  x2kl(l,l) S ( x ) = S ( x − 2 k l ) = ⋯ S(x)=S(x-2kl)=\cdots S(x)=S(x2kl)=

端点的值: S ( 2 k l ± l ) = S ( ± l ) = f ( − l + 0 ) + f ( l + 0 ) 2 \displaystyle{ S(2kl\pm l)=S(\pm l)=\frac{f(-l+0)+f(l+0)}{2} }% S(2kl±l)=S(±l)=2f(l+0)+f(l+0)

05 非标准的有限区间

[ a , a + 2 l ] [a,a+2l] [a,a+2l] 上逐段光滑函数 f ( x ) f(x) f(x) 展成傅里叶级数,

a n = 1 l ∫ a a + 2 l f ( x ) cos ⁡ n π x l d x   ,   n = 0 , 1 , 2 , ⋯ \displaystyle{ a_n=\frac1l\int_{a}^{a+2l}f(x)\cos\frac{n\pi x}{l} dx\ , \ n=0,1,2,\cdots }% an=l1aa+2lf(x)coslnπxdx , n=0,1,2, b n = 1 l ∫ a a + 2 l f ( x ) sin ⁡ n π x l d x   ,   n = 1 , 2 , 3 , ⋯ \displaystyle{ b_n=\frac1l\int_{a}^{a+2l}f(x)\sin\frac{n\pi x}{l} dx\ , \ n=1,2,3,\cdots }% bn=l1aa+2lf(x)sinlnπxdx , n=1,2,3,

于是得到 f ( x ) f(x) f(x) 的傅里叶级数:

a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π x l + b n sin ⁡ n π x l ) = S ( x ) = f ( x − 0 ) + f ( x − 0 ) 2   ,   x ∈ ( a , a + 2 l ) \displaystyle{ \frac{a_0}{2}+\sum\limits_{n=1}^{\infty}{(a_n\cos\frac{n\pi x}{l}+b_n\sin\frac{n\pi x}{l})}=S(x)=\frac{f(x-0)+f(x-0)}{2} \ , \ x\in(a,a+2l) }% 2a0+n=1(ancoslnπx+bnsinlnπx)=S(x)=2f(x0)+f(x0) , x(a,a+2l)

S ( a ) = S ( a + 2 l ) = f ( a + 0 ) + f ( a + 2 l − 0 ) 2 \displaystyle{ S(a)=S(a+2l)=\frac{f(a+0)+f(a+2l-0)}{2} }% S(a)=S(a+2l)=2f(a+0)+f(a+2l0)

四、正余弦级数

[ 0 , l ] [0,l] [0,l] 上逐段光滑函数 f ( x ) f(x) f(x) 展成余弦级数或正弦级数。

01 展成余弦级数

(1) 构造偶函数

F ( x ) = { f ( − x ) − l ⩽ x < 0 f ( x ) 0 ⩽ x ⩽ l F(x)= \begin{cases}f(-x) & -l\leqslant x<0 \\ f(x) & 0\leqslant x\leqslant l\end{cases} F(x)={f(x)f(x)lx<00xl

(2) 构造函数展成余弦级数

F ( x ) F(x) F(x) [ − l , l ] [-l,l] [l,l] 上逐段光滑,由于 F ( x ) F(x) F(x) 是偶函数,知 b n = 0   ,   n = 1 , 2 , 3 , ⋯ b_n=0\ , \ n=1,2,3,\cdots bn=0 , n=1,2,3,

a n = 2 l ∫ 0 l F ( x ) cos ⁡ n π x l d x = 2 l ∫ 0 l f ( x ) cos ⁡ n π x l d x   ,   n = 0 , 1 , 2 , ⋯ \displaystyle{ a_n=\frac2l\int_{0}^{l}F(x)\cos\frac{n\pi x}{l} dx=\frac2l\int_{0}^{l}f(x)\cos\frac{n\pi x}{l} dx\ , \ n=0,1,2,\cdots }% an=l20lF(x)coslnπxdx=l20lf(x)coslnπxdx , n=0,1,2,

得到 F ( x ) F(x) F(x) 的余弦级数:

a 0 2 + ∑ n = 1 ∞ a n cos ⁡ n π x l = F ( x − 0 ) + F ( x + 0 ) 2   ,   x ∈ ( − l , l ) \displaystyle{ \frac{a_0}{2}+\sum\limits_{n=1}^{\infty}{a_n\cos\frac{n\pi x}{l}}=\frac{F(x-0)+F(x+0)}{2} \ , \ x\in(-l,l) }% 2a0+n=1ancoslnπx=2F(x0)+F(x+0) , x(l,l)

(3) 构造函数转化为待求函数

x ∈ ( 0 , l ) x\in(0,l) x(0,l) a 0 2 + ∑ n = 1 ∞ a n cos ⁡ n π x l = S ( x ) = f ( x − 0 ) + f ( x + 0 ) 2   ,   x ∈ ( 0 , l ) \displaystyle{ \frac{a_0}{2}+\sum\limits_{n=1}^{\infty}{a_n\cos\frac{n\pi x}{l}}=S(x)=\frac{f(x-0)+f(x+0)}{2} \ , \ x\in(0,l) }% 2a0+n=1ancoslnπx=S(x)=2f(x0)+f(x+0) , x(0,l)

x ∈ { 0 , l } x\in\{0,l\} x{0,l} S ( 0 ) = lim ⁡ x → 0 + f ( x ) S(0)=\lim\limits_{x \rightarrow 0^+}f(x) S(0)=x0+limf(x) S ( l ) = lim ⁡ x → l − f ( x ) S(l)=\lim\limits_{x \rightarrow l^-}f(x) S(l)=xllimf(x) ,称 f ( x ) f(x) f(x) [ 0 , l ] [0,l] [0,l] 展成余弦级数。

(4) 有限区间到区间外部

注意,这里 S ( x ) S(x) S(x) 处处有定义,周期 T = 2 l T=2l T=2l 是偶函数。

求在 ( 0 , l ) (0,l) (0,l) 外部的 S ( x ) S(x) S(x) ,例: x ∈ ( − l , 0 ) x\in(-l,0) x(l,0)
x ∈ ( − l , 0 ) ⇒ − x ∈ ( 0 , l ) 由 S ( − x ) = S ( x ) 所 以 , S ( x ) = S ( − x ) = ⋯   , − x ∈ ( 0 , l ) x ∈ ( 2 k l − l , 2 k l + l ) , k ∈ Z , k ≠ 0 ⇒ x − 2 k l ∈ ( − l , l ) S ( x ) = S ( x − 2 k l ) S ( 2 k l ) = S ( 0 ) = lim ⁡ x → 0 + f ( x ) S ( 2 k l + l ) = S ( l ) = lim ⁡ x → l − f ( x ) \begin{aligned} & x\in(-l,0)\Rightarrow -x\in(0,l)\\ & 由S(-x)=S(x)\\ & 所以,S(x)=S(-x)=\cdots,-x\in(0,l)\\ & x\in(2kl-l,2kl+l),k\in Z,k\neq0\\ & \Rightarrow x-2kl\in(-l,l)\\ & S(x)=S(x-2kl)\\ & S(2kl)=S(0)=\lim\limits_{x \rightarrow 0^+}f(x)\\ & S(2kl+l)=S(l)=\lim\limits_{x \rightarrow l^-}f(x) \end{aligned} x(l,0)x(0,l)S(x)=S(x)S(x)=S(x)=,x(0,l)x(2kll,2kl+l),kZ,k=0x2kl(l,l)S(x)=S(x2kl)S(2kl)=S(0)=x0+limf(x)S(2kl+l)=S(l)=xllimf(x)

02 展成正弦级数

(1) 构造奇函数

F ( x ) = { − f ( − x ) − l < x < 0 0 x = 0 f ( x ) 0 < x < l F(x)= \begin{cases}-f(-x) & -l< x<0 \\ 0 & \quad x=0 \\ f(x) & 0< x< l\end{cases} F(x)=f(x)0f(x)l<x<0x=00<x<l

(2) 构造函数展成正弦级数

F ( x ) F(x) F(x) [ − l , l ] [-l,l] [l,l] 上逐段光滑,由于 F ( x ) F(x) F(x) 是奇函数,知 a n = 0   ,   n = 1 , 2 , 3 , ⋯ a_n=0\ , \ n=1,2,3,\cdots an=0 , n=1,2,3,

b n = 2 l ∫ 0 l F ( x ) sin ⁡ n π x l d x = 2 l ∫ 0 l f ( x ) sin ⁡ n π x l d x   ,   n = 1 , 2 , 3 , ⋯ \displaystyle{ b_n=\frac2l\int_{0}^{l}F(x)\sin\frac{n\pi x}{l} dx=\frac2l\int_{0}^{l}f(x)\sin\frac{n\pi x}{l} dx\ , \ n=1,2,3,\cdots }% bn=l20lF(x)sinlnπxdx=l20lf(x)sinlnπxdx , n=1,2,3,

得到 F ( x ) F(x) F(x) 的正弦级数:

∑ n = 1 ∞ b n sin ⁡ n π x l = F ( x − 0 ) + F ( x + 0 ) 2   ,   x ∈ ( − l , l ) \displaystyle{ \sum\limits_{n=1}^{\infty}{b_n\sin\frac{n\pi x}{l}}=\frac{F(x-0)+F(x+0)}{2} \ , \ x\in(-l,l) }% n=1bnsinlnπx=2F(x0)+F(x+0) , x(l,l)

(3) 构造函数转化为待求函数

x ∈ ( 0 , l ) x\in(0,l) x(0,l) ∑ n = 1 ∞ b n sin ⁡ n π x l = S ( x ) = f ( x − 0 ) + f ( x + 0 ) 2   ,   x ∈ ( 0 , l ) \displaystyle{ \sum\limits_{n=1}^{\infty}{b_n\sin\frac{n\pi x}{l}}=S(x)=\frac{f(x-0)+f(x+0)}{2} \ , \ x\in(0,l) }% n=1bnsinlnπx=S(x)=2f(x0)+f(x+0) , x(0,l)

x ∈ { 0 , l } x\in\{0,l\} x{0,l} S ( 0 ) = 0 S(0)=0 S(0)=0 S ( l ) = 0 S(l)=0 S(l)=0 ,称 f ( x ) f(x) f(x) [ 0 , l ] [0,l] [0,l] 展成正弦级数。

(4) 有限区间到区间外部

注意,这里 S ( x ) S(x) S(x) 处处有定义,周期 T = 2 l T=2l T=2l 是奇函数。

求在 ( 0 , l ) (0,l) (0,l) 外部的 S ( x ) S(x) S(x) ,例: x ∈ ( − l , 0 ) x\in(-l,0) x(l,0)
x ∈ ( − l , 0 ) ⇒ − x ∈ ( 0 , l ) 由 S ( − x ) = − S ( x ) 所 以 , S ( x ) = − S ( − x ) = ⋯   , − x ∈ ( 0 , l ) x ∈ ( 2 k l − l , 2 k l + l ) , k ∈ Z , k ≠ 0 ⇒ x − 2 k l ∈ ( − l , l ) S ( x ) = S ( x − 2 k l ) S ( 2 k l ) = S ( 0 ) = 0 S ( 2 k l + l ) = S ( l ) = 0 \begin{aligned} & x\in(-l,0)\Rightarrow -x\in(0,l)\\ & 由S(-x)=-S(x)\\ & 所以,S(x)=-S(-x)=\cdots,-x\in(0,l)\\ & x\in(2kl-l,2kl+l),k\in Z,k\neq0\\ & \Rightarrow x-2kl\in(-l,l)\\ & S(x)=S(x-2kl)\\ & S(2kl)=S(0)=0\\ & S(2kl+l)=S(l)=0 \end{aligned} x(l,0)x(0,l)S(x)=S(x)S(x)=S(x)=,x(0,l)x(2kll,2kl+l),kZ,k=0x2kl(l,l)S(x)=S(x2kl)S(2kl)=S(0)=0S(2kl+l)=S(l)=0

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值